Regular Meeting of the Mt. Pleasant City Commission Monday, September 25, 2023 7:00 p.m.

AGENDA

CALL TO ORDER:
PLEDGE OF ALLEGIANCE:
LAND ACKNOWLEDGEMENT STATEMENT:
ROLL CALL:

ADDITIONS/ DELETIONS TO AGENDA:

PROCLAMATIONS AND PRESENTATIONS:

PUBLIC INPUT ON AGENDA ITEMS:

RECEIPT OF PETITIONS AND COMMUNICATIONS:

1. Minutes of the Planning Commission (August).

CONSENT ITEMS:

- 2. Approval of the minutes from the regular meeting held September 11, 2023.
- 3. Consider approval of a contract with Wonsey Tree Service of Alma for 2024-2025 tree trimming and removal.
- 4. Consider authorization of a Grant Application Assurance form as part of a Mt. Pleasant Area Community Foundation grant request for thermal imaging equipment.
- 5. Consider resolution authorizing an amendment to the Standard Lighting Contract with Consumers Energy for the Pickard-Bradley intersection.
- Consider resolution authorizing Michigan Department Natural Resources (MI-DNR) Urban and Community Forestry Program Grant Application – Town Center Civic Space Project.
- 7. Receive an ordinance to amend the City Snow and Ice Removal from Sidewalks ordinance and set a public hearing for October 9, 2023, on the same.
- 8. Receive an ordinance to amend the City Parking Ordinance and set a public hearing for October 9, 2023, on the same.
- 9. Consider approval of a budget amendment for the City's network firewall.

All interested persons may attend and participate. Persons with disabilities who need assistance to participate may call the Human Resources Office at 989-779-5313. A 48-Hour advance notice is necessary for accommodation. Hearing or speech impaired individuals may contact the City via the Michigan Relay Service by dialing 7-1-1.

City Commission Agenda September 25, 2023 Page 2

- 10. Receive an ordinance to amend Table 154.405. A District Standards: CD-4 General Urban and CD-5 Urban Center Character Districts of the Mt. Pleasant Zoning Ordinances regarding driveway widths and set a public hearing for October 23, 2023, on the same.
- 11. Receive an ordinance to amend Table 154.410.A Building and Lot Principal Use, Section 154.410.B Special Uses and Article VII of the Mt. Pleasant Zoning Ordinances Regarding Institutional Uses and set a public hearing for October 23, 2023, on the same.
- 12. Receive an ordinance to amend Table 154.405.A District Standards: CD-3L Sub-Urban Large, CD-3 Sub-Urban, and CD-04 General Urban Character Districts of the Mt. Pleasant Zoning Ordinances Regarding the Ratio of Houses Versus Garage at Frontage and set a public hearing for October 23, 2023, on the same.
- 13. Consider approval of Payrolls and Warrants.

PUBLIC HEARINGS:

NEW BUSINESS:

14. Consider prioritization and approval of submission of City requests for fall 2023 Saginaw Chippewa Indian Tribe 2% allocation.

ANNOUNCEMENTS ON CITY-RELATED ISSUES AND NEW BUSINESS:

PUBLIC COMMENT ON AGENDA AND NON-AGENDA ITEMS:

RECESS:

WORK SESSION:

15. Presentation by Finance Director Chris Saladine on the 2024 Proposed Operating Budget.

CLOSED SESSION:

- 16. Consider closed session pursuant to subsection 8(h) of the Open Meetings Act to consider material exempt from discussion or disclosure by state or federal statute.
- 17. Third Party Administrator.

ADJOURNMENT:

All interested persons may attend and participate. Persons with disabilities who need assistance to participate may call the Human Resources Office at 989-779-5313. A 48-Hour advance notice is necessary for accommodation. Hearing or speech impaired individuals may contact the City via the Michigan Relay Service by dialing 7-1-1.

TO: MAYOR AND CITY COMMISSION SEPTEMBER 25, 2023

FROM: AARON DESENTZ, CITY MANAGER

SUBJECT: CITY MANAGER REPORT ON AGENDA ITEMS

Proclamations and Presentations:

Receipt of Petitions and Communications:

Consent Items:

- 3. Consider approval of a contract with Wonsey Tree Service of Alma for 2024-2025 tree trimming and removal.
 - a. The City contracts with a private firm for tree trimming and removal services for trees located in the street rights-of-way. Wonsey Tree Service is the lowest bidder based on a price per hour. Wonsey has done business with the City in the past and are capable of providing the service for 2024-2025.
- 4. Consider authorization of a Grant Application Assurance form as part of a Mt. Pleasant Area Community Foundation grant request for thermal imaging equipment.
 - a. Staff is applying for a grant through the Mt. Pleasant Area Community Foundation. The total request is for \$38,823 to replace thermal imaging units used in the Fire Department. The City Commission is requested to approve the grant application.
- 5. Consider resolution authorizing an amendment to the Standard Lighting Contract with Consumers Energy for the Pickard-Bradley intersection.
 - a. Consumers Energy is requesting to remove the existing center suspension light over the intersection and Pickard and Bradley and replace it with two bracket LED streetlights to accommodate a future traffic signal at this intersection. The streetlight removal and installation work will be completed by Consumers at no cost to the city.
- 6. Consider resolution authorizing Michigan Department Natural Resources (MI-DNR) Urban and Community Forestry Program Grant Application Town Center Civic Space Project.
 - a. Staff is applying for an MDNR grant to remove 9 trees and add 57 trees to the Town Center project next year. The estimated total cost of this activity is \$50,000 with a match of \$38,990 already dedicated to the project budget. The City Commission is asked to approve the attached Resolution authorizing the grant.
- 7. Receive an ordinance to amend the City Snow and Ice Removal from Sidewalks ordinance and set a public hearing for October 9, 2023, on the same.
 - a. At the May 22nd City Commission meeting, a work session was held where Commissioners provided feedback on the City's sidewalk snow removal efforts and overall walkability. From that feedback, staff has developed the attached ordinance which requires property owners to remove snow and ice from sidewalks 24 hours after a snow or ice event. City staff will continue to provide snow removal services on sidewalks already established in the City's program. The City Commission is asked to set a public hearing on the proposed ordinance.

- 8. Receive an ordinance to amend the City Parking Ordinance and set a public hearing for October 9, 2023, on the same.
 - a. The City Commission is asked to set a public hearing to consider an update to the City's ordinance that establishes rules for parking. The amended ordinance modifies definitions to the previous ordinance, removes the even/odd overnight parking system and establishes a system for parking lot snow removal similar to the snow emergency process, provides reference to special parking arrangements for future ease of recall, and establishes regulations for parking at electric car charging stations.
- 9. Consider approval of a budget amendment for the City's network firewall.
 - a. The firewall is a highly important piece of equipment that is part of our cybersecurity infrastructure. The old system was scheduled for replacement in 2024 however, the vendor which the City purchases this equipment and support from has offered a deal for an early upgrade. The early upgrade will save the City \$2,460. The City Commission is asked to approve a budget amendment to authorize the purchase in the current fiscal year.
- 10. Receive an ordinance to amend Table 154.405.A District Standards: CD-4 General Urban and CD-5 Urban Center Character Districts of the Mt. Pleasant Zoning Ordinances regarding driveway widths and set a public hearing for October 23, 2023, on the same.
 - a. The Planning Commission has recommended the attached ordinance amendment regarding driveway widths. The proposed amendments increase maximum driveway width from 24 feet to 30 feet along Pickard, Mission and High Streets within the CD-4 and CD-5 districts. It also permits driveways wider than 30 feet along MDOT routes if the proposal incorporates increased pedestrian safety measures. Lastly, the amendment increases the maximum driveway width for residential development from 10 feet to 18 feet in the CD-4 district.
- 11. Receive an ordinance to amend Table 154.410.A Building and Lot Principal Use, Section 154.410.B Special Uses and Article VII of the Mt. Pleasant Zoning Ordinances Regarding Institutional Uses and set a public hearing for October 23, 2023, on the same.
 - a. The Planning Commission has recommended the attached ordinance amendments regarding transitional housing, adult day care centers, and certain medical offices. It authorizes transitional housing in the CD-4 and CD-5 districts as part of a Special Use Permit for larger (more than 16 occupants) facilities and by right for smaller facilities (16 or less occupants). Certain medical offices would be allowed by right and urgent and emergency care facilities would be allowed by Special Use Permit in the SD-RC district. Lastly, adult day care centers would be a use by right in the CD-3L, CD-3, CD-4, and CD-5 districts.
- 12. Receive an ordinance to amend Table 154.405.A District Standards: CD-3L Sub-Urban Large, CD-3 Sub-Urban, and CD-04 General Urban Character Districts of the Mt. Pleasant Zoning Ordinances Regarding the Ratio of Houses Versus Garage at Frontage and set a public hearing for October 23, 2023, on the same.
 - a. The Planning Commission has recommended the attached ordinance amendments regarding home façade to garage ratios. The proposal would allow for greater flexibility for residential buildings by increasing the threshold for the home façade to garage ratio.

New Business:

- 14. Consider prioritization and approval of submission of City requests for fall 2023 Saginaw Chippewa Indian Tribe 2% allocation.
 - a. The City Commission annually reviews staff requests for 2% Allocation Grants through the Saginaw Chippewa Indian Tribe. Proceeds from certain types of gaming are offered by the SCIT as part of this grant program. As part of this review the City Commission is asked to rank the top five (5) projects for consideration from the Tribe. The City Commission packet from 09/11/2023 included all of the applications that staff has prepared. At the upcoming meeting, each Commissioner will state their top five (5) projects that are a priority for them. Staff will then provide the collective top 5 ranking to the Tribe while submitting all of the grant applications. The Tribal Council considers these priority projects listed by the City Commission when making their awards.
 - i. Recommended Action: Feedback on the top 5 projects is needed from each City Commissioner.

Work Session:

- 15. Presentation by Finance Director Chris Saladine on the 2024 Proposed Operating Budget.
 - a. Finance Director Chris Saladine will present the highlights of the 2024 proposed operating budget. The presentation will include a review of the General Fund, Special Revenue Funds, and Enterprise Funds. The Clty Commission will be asked to engage in a discussion around several City services and provide feedback and thoughts on the proposed budget. A follow-up work session on the budget will be scheduled for October 23rd

Closed Session:

- 16. Consider closed session pursuant to subsection 8(h) of the Open Meetings Act to consider material exempt from discussion or disclosure by state or federal statute.
 - a. The City Commission is asked to go into a closed session to discuss material exempt from disclosure by state or federal statute.
 - Recommended Action: A motion to enter closed session pursuant to subsection 8(h) of the Open Meetings Act to consider material exempt from discussion or disclosure by state or federal statute.

17. Third Party Administrator.

a. The City Commission may need to take action based on discussion that will take place in the above closed session.

Mt. Pleasant Planning Commission Minutes of the Regular Meeting August 3, 2023

I. Chair Hoenig called the meeting to order at 7:00 p.m.

Present: Hoenig, Irwin, Kingsworthy, Liesch, Nicholas

Absent: Devenney, Friedrich, Haveles, Ortman

Staff: Manuela Powidayko, Laura Delamater

II. Approval of the Agenda:

Motion by Liesch, support by Irwin to approve the agenda.

Motion approved unanimously.

III. Approval of the Minutes:

A. July 6, 2023 Regular Meeting

Motion by Kingsworthy, support by Liesch to approve the minutes from the July 6, 2023 regular meeting as presented.

Motion approved unanimously.

B. July 6, 2023 Work Session Meeting

Motion by Liesch, support by Irwin to approve the minutes from the July 6, 2023 work session meeting as presented.

Motion approved unanimously.

IV. Zoning Board of Appeals report for July:

Commissioner Friedrich was absent. Powidayko reported that the Zoning Board of Appeals did not meet in July.

V. Communications:

Powidayko reported that there were no communications.

VI. Public Hearings:

A. SUP-23-12 – 603 N. Washington – Marc and Holly Knudson – Request for Special Use Permit for a short-term rental.

Powidayko introduced SUP-23-12, a request for Special Use Permit for a short-term rental.

Powidayko reviewed the current and prior uses of the property. Powidayko provided an overview of the property including current zoning, future, current and prior land use. Powidayko reviewed photos showing current conditions of the property.

Powidayko reviewed Special Use Conditions regarding short-term rentals.

Powidayko closed her presentation with recommendation to approve SUP-23-12 subject to conditions.

Discussion took place.

Marc and Holly Knudson, owners, were on hand to address the board and answer questions.

Discussion took place.

Chair Hoenig opened the public comment.

Powidayko noted that there were no other public comments submitted via zoom or electronically.

There being no one else who wished to speak, public comment was closed.

Discussion took place.

Motion by Liesch, support by Irwin to approve SUP-23-12 subject to the following conditions:

1. The applicant shall comply with the requirements of Public Safety and get approval for a rental license with the Mt. Pleasant Fire Department.

Discussion took place.

Ayes: Hoenig, Irwin. Kingsworthy, Liesch, Nicholas

Nays: None

Motion approved unanimously.

VII. Public Comments:

Chair Hoenig opened the public comment. Powidayko noted that there were no public comments submitted via zoom or electronically. There being no one who wished to speak, public comment was closed.

VIII. Site Plan Reviews:

A. None

IX. Unfinished Business:

A. None

X. New Business:

A. (TC-23-01) Discuss amendment to Table 154.405.A of the zoning ordinance regarding driveway widths in CD-4 (General Urban) and CD-5 (Urban Center) Character Districts and consider setting a public hearing on this issue at the September 7, 2023 regular meeting.

Powidayko introduced Text Change 23-01 to increase the maximum driveway width requirement from 24 to 30 feet along Pickard, Mission and High Street (west of Mission) and allow for a wider driveway along MDOT's routes, if the applicant incorporates increased pedestrian safety designs. The packet also included information about allowing residential development to design 18-foot wide driveways within CD-4 Districts to match the standard in CD-3L and CD-3 districts.

Discussion took place.

Motion by Irwin, support by Nicholas to set a public hearing to consider the proposed text change at the September 7, 2023 regular meeting.

Motion approved unanimously.

B. (TC-23-02) - Discuss amendment to Article VII and Table 154.410.A of the zoning ordinance regarding institutional uses (homeless shelters, adult day care centers, and detoxification facilities) and consider setting a public hearing on this issue at the September 7, 2023 regular meeting.

Powidayko introduced Text Change 23-02 to allow transitional housing within commercial districts (CD-4, CD-5) pursuant to a SUP and consider two options for regulating smaller transitional housing:

Option 1: Permit smaller transitional housing within CD-3L, CD-3, CD-4 and CD-5 Character Districts by right.

Option 2: Continue to permit smaller shelters by classifying them under an existing residential use category (single-family, two-family, multi-family, or rooming dwelling).

The packet also included information about allowing medical uses (medical and dental offices and outpatient/urgent care facilities/emergency rooms) within SD-RC and adult day care centers within CD-3L, CD-3, CD-4 and CD-5 Districts.

Discussion took place.

Motion by Kingsworthy, support by Irwin to set a public hearing to consider the proposed text change (with Option 1) at the September 7, 2023 regular meeting.

Roll Call Vote.

Ayes: Nicholas, Kingsworthy, Liesch, Irwin, Hoenig

Nays: None

Motion approved unanimously.

C. (TC-23-03) — Discuss amendment to Table 154.405.A of the zoning ordinance regarding the required ratio of house versus garages in CD-3L, CD-3 and CD-4 and consider setting a public hearing on this issue at the September 7, 2023 regular meeting.

Powidayko introduced Text Change 23-03 to exempt two-story residences from the "ratio of house versus garage at frontage" requirement, which requires garages to occupy less than 50% of the total width of buildings located within CD-3L, CD-3 and CD-4 districts, and to increase the requirement from 50% to 60% for single-story residences.

Discussion took place.

Motion by Irwin, support by Kingsworthy to set a public hearing to consider the proposed text change at the September 7, 2023 regular meeting.

Motion approved unanimously.

XI. Other:

A. Staff report.

Powidayko reviewed the Administrative Site Plan Reviews that staff had approved in July.

XII. Adjournment:

Motion by Irwin, support by Liesch for adjournment.

Motion approved unanimously.

Meeting adjourned at 7:53 p.m.

lkd

Minutes of the regular meeting of the City Commission held Monday, September 11, 2023, at 7:00 p.m. in the City Commission Room, 320 W. Broadway St., Mt. Pleasant, Michigan with virtual options.

Mayor Perschbacher called the meeting to order.

The Pledge of Allegiance was recited.

Land Acknowledgement statement was recited.

Commissioners Present: Mayor Amy Perschbacher, Vice Mayor Mary Alsager; Commissioners Brian Assmann, Liz Busch, Bryan Chapman, Maureen Eke & Boomer Wingard

Commissioners Absent: None

Others Present: City Manager Aaron Desentz and City Clerk Heather Bouck

Proclamations and Presentations

Finance Director Christopher Saladine introduced Utility Billing Office Professional Susan Tham.

Parks & Public Spaces Director Philip Biscorner introduced Parks and Public Spaces I Joe Bryant.

Mayor Perschbacher read and presented to Maureen Eke on behalf of the Isabella County Human Rights Coalition, a Proclamation recognizing International Day of Peace "September 21, 2023". September 23, 2023 is the annual Peace event starting with a walk beginning at 3 pm at City Hall and ending at Island Park.

Mary Freeman of Lean & Green Michigan gave a presentation on the PACE Program.

MERS Regional Manager Tony Radjenovich gave a presentation on Municipal Employees' Retirements System of Michigan (MERS).

Casey Thomas Ahlbrandt-Rains of Gabriel, Roeder, Smith & Company (GRS) gave a presentation on Act 345.

Moved by Commissioner Chapman and seconded by Commissioner Eke to approve the agenda as presented. Motion unanimously adopted.

Receipt of Petitions and Communications

Received the following petitions and communications:

- 7. Monthly report on police related citizen complaints received.
- 8. Zoning Board of Appeals November Meeting Minutes.
- 9. Notice of Temporary Traffic Control Orders #6-2023 and #7-2023.

Moved by Commissioner Eke and seconded by Commissioner Busch to approve the following items on the Consent Calendar:

- 10. Minutes of the regular meeting of the City Commission held August 28, 2023;
- 11. Resolution in support of final approval of Temporary Traffic Control Order #5-2023 as follows:

WHEREAS, under the date of July 27, 2023 the Traffic Engineer of the City of Mt. Pleasant issued temporary traffic control order No. 5-2023:

Remove 15 minute parking sign at 121 S Kinney. New property owners do not want the sign. Sign was requested by a previous owner.

Said temporary traffic control order was presented to the City Commission on September 11, 2023, for review and after reviewing said temporary control order and being fully advised in the premises,

BE IT RESOLVED, that the City Commission approves making temporary traffic control order No. 5-2023 a permanent traffic control order.

- 12. Amendment to bond counsel contract with Dickinson Wright for an additional \$10,500.
- 13. Contract with R & T Murphy Trucking of Mt. Pleasant, Michigan for 2023-2024 leaf hauling in the amount of \$124.50 per hour.
- 14. Contract with R & T Murphy Trucking of Mt. Pleasant, Michigan for 2023-2025 snow hauling in the amount of \$124.50 per hour.
- 15. Contract with Fleis & Vandenbrink of Midland, Michigan for Professional Engineering Services Mill Pond Park Weir & Pedestrian Bridge Repairs and Chipp-A-Waters Park Riverbank Restoration for a total price of \$77,500.
- 16. Receive Fall 2023 Saginaw Chippewa Indian Tribe 2% funding requests from City departments. No action required at this time.
- 17. Receive proposed 2024 Annual Operating Budget and set a public hearing for Monday, November 13, 2023 at 7:00 p.m. on same.
- 18. Resolution to amend 2023 Operating Budget as follows:

WHEREAS, Article VII, Section 10 authorizes the City Commission to amend the annual operating budget by resolution, and

WHEREAS, the 2023 operating budget was originally adopted by resolution on November 21, 2022 and

WHEREAS, the activities of the City since the budget was adopted have been such as to necessitate an amendment at this time,

during the year beginning January 1, 2023 and ending December 31, 2023;

NOW THEREFORE, BE IT RESOLVED, that the following revenue and expenditure appropriations be approved and the 2023 operating budget be amended, effective immediately.

	Fund			Fund
	Balance	2023	2023	Balance
	January 1	<u>Revenue</u>	<u>Expenditures</u>	December 31
GOVERNMENTAL FUNDS				
GENERAL FUND				
Unassigned	\$4,861,913	\$15,323,740		
Legislative Division			1,283,880	
Finance Division			1,821,580	
Public Safety Division		·	7,729,020	

Company with Complete Division			0.040.500	
Community Services Division Public Works Division			2,913,520 890,110	
Amount from Fund Balance			,	
Total Unassigned	\$4.064.042	\$15,323,740	(383,620) \$14,254,490	\$5,931,163
Assigned for Next Year's Budget	\$4,861,913 383,620	69,030	383,620	69,030
		09,030		
Assigned for Economic Initiatives Assigned for Projects/Programs	736,088 3,447,588	251,950	15,000 404,130	721,088
Restricted	483,210	12,500	12,750	3,295,408 482,960
Committed for Special Assessmen		0	0	337,101
Committed for Neighborhoods	ts 337,101 222,670	40,400	80,000	183,070
Committed for Capital Projects	1,824,700	776,430	404,720	2,196,410
Non-spendable	446,775	0	0	446,775
Total General Fund	\$12,743,665	\$16,474,050	\$15,554,710	\$13,663,005
Total General Fund	\$12,743,003	\$10,474,050	φ15,554,710	\$13,003,005
SPECIAL REVENUE FUNDS				
MAJOR STREET FUND				
Restricted	\$1,609,783	\$1,979,880	\$2,617,420	\$972,243
Restricted for Donation	15,400	0	0	15,400
Total Major Street Fund	1,625,183	1,979,880	2,617,420	987,643
•				
LOCAL STREET FUND				
Restricted	883,423	\$1,200,830	\$1,778,910	\$305,343
Restricted for Donation	15,209	0	0	15,209
Total Local Street Fund	898,632	1,200,830	1,778,910	320,552
STORM SEWER FUND				
Restricted	0	946,500	946,500	0
Restricted		340,000	340,000	
DOWNTOWN SPECIAL ASSESSI	MENT			
Restricted from Special Assessr		109,400	125,860	125,159
Total Governmental Funds	A45 400 000	A40 = 04 400	400 070 000	A45.000.050
Appropriated Budget	\$15,409,099	\$19,764,160	\$20,076,900	\$15,096,359
		Sources of	Uses of	Working
		Working	Working	Capital
		Capital	Capital	December 31
Component Units		Capital	Capital	December 31
MISSION STREET DDA FUND				
	\$1,209,916	\$374,000	\$141,600	\$1,442,316
Assigned	Ψ1,203,310	Ψοι 4,000	Ψ1+1,000	ψ1, 11 2,310
TAX INCREMENT FIN AUTH FUN	ND			
Central Business District Assigne		300	121,522	0
Central Business District Restric	•	0	42,437	0
Ind Park North Assigned	90,000	0	0	90,000
Ind Park North Unassigned	6,181	0	4,000	2,181
Total TIFA	259,840	0	4,000	92,181

BROWNFIELD REDEVELOPMEN	T FUND			
Assigned	14,252	53,520	53,660	14,112
Unassigned	1,021	300	0	1,321
Total Brownfield	15,273	53,820	53,660	15,433
Total Component Unit Funds				
Informational Summaries	\$1,485,029	\$427,820	\$199,260	\$1,549,930
		Sources of	Uses of	Working
		Working	Working	Capital
		Capital	Capital	December 31
PROPRIETARY FUNDS		<u> </u>	<u>Capital</u>	<u>December of</u>
Enterprise Funds				
RECREATION FUND				
Restricted for PEAK	0	498,660	408 660	0
Assigned for PEAK	1,197,040	351,350	498,660 457,730	1,090,660
Restricted for Recreation	10,000	0	10,000	1,090,000
Assigned for Recreation	99,804	615,340	682,890	32,254
Total Recreation Fund	1,306,844	1,465,350	1,649,280	1,122,914
Total Necleation Fund	1,300,044	1,405,550	1,049,200	1,122,914
LAND DEVELOPMENT FUND				
Restricted	\$50,000	0	0	\$50,000
Unassigned	9,031	96,380	92,380	13,031
Total Land Development	54,187	96,380	92,380	63,031
AIRPORT FUND				
Restricted	162,527	80,000	80,000	162,527
Assigned	82,519	0	0	82,519
Unassigned	303,383	608,210	717,620	193,973
Total Airport	548,429	688,210	797,620	439,019
WATER RESOURCE RECOVE	RY FUND			
Assigned	2,634,436	150,000	184,180	2,600,256
Restricted	7,135,301	27,120,000	9,161,910	25,093,391
Unassigned	1,596,961	3,112,210	2,906,920	1,802,251
Total Water Resource Recovery Fu		30,382,210	12,253,010	29,495,898
WATER FUND				
Assigned	1,255,154	689,000	865,000	1,079,154
Unassigned	2,172,721	3,318,480	3,361,000	2,130,201
Total Water	3,427,875	4,007,480	4,226,000	3,209,355
001 ID WAOTE 51 IN 5				
SOLID WASTE FUND	000 000			000 000
Restricted	200,000	0	700,000	200,000
Unassigned	882,141	665,970	780,090	768,021

Total Solid Waste	1,082,141	665,970	780,090	968,021
Internal Service Funds				
MOTOR POOL FUND				
Assigned	14,000		14,000	0
Unassigned	899,323	973,930	1,245,540	627,713
Total Motor Pool	913,323	973,930	1,259,540	627,713
SELF INSURANCE FUND	1,188,210	2,579,100	3,238,580	528,730
Total Proprietary Funds				
Informational Summaries	\$19,873,707	\$40,858,630	\$24,282,500	\$36,454,681

^{19.} Payrolls and Warrants dated September 7, 2023 all totaling \$214,743.15. Motion unanimously adopted.

Moved by Commissioner Eke and seconded by Commissioner Assmann to approve the following appointments as recommended by the Appointments Committee:

<u>Local Officers Compensation Commission (LOCC)</u>	Term Expires
Brian Hansen	12/31/2023
Jim Kridler	12/31/2026
Gary Mark	12/31/2029

Motion unanimously adopted.

Moved by Commissioner Eke and seconded by Commissioner Assmann to approve the purchase of three Netzsch Peripro peristatic pumps and one set of replacement parts from Kerr Pump & Supply of Oak Park, Michigan, in the amount of \$41,690. Motion unanimously adopted.

Announcements on City-Related Issues and New Business

Commissioner Busch announced that the Cat Coalition is interested in a TNR contract with the City and would like to see this added as a work session item in the future.

Commissioner Eke raised concerns regarding speeding on City streets including Preston, Watson and Washington.

Commissioner Wingard commented that he would like to see a future discussion on options for natural landscaping rather than cut grass. He encouraged residents to get their updated COVID Booster.

Commissioner Alsager commented that she would like to see a plaque or other dedication of the historic bridge into Island Park.

City Manager Desentz thanked the Commission for their time and attention this evening with the presentations.

Pul	olic	Comment	on Ag	enda	and	Non-A	١g	<u>genda Items</u>

Joelle Delucia, 634 S. University amendment to the City Ordinances to	supports the efforts to permit naturalized landscaping and allow for same.
Moved by Commissioner Eke a meeting at 8:54 p.m. Motion unanimo	nd seconded by Commissioner Chapman to adjourn the usly adopted.
Amy Perschbacher, Mayor	Heather Bouck, City Clerk

Memorandum

TO: Aaron Desentz, City Manager

FROM: Jason Moore, DPW Director

DATE: September 15, 2023

SUBJECT: Award 2024-2025 Tree Trimming and Removal Contract

The City Commission is requested to award the contract for the 2024-2025 Tree Trimming and Removal bid to Wonsey Tree Service for the bid prices stated.

The City contracts with a private firm for tree trimming and removal services for trees located in the street rights-of-way. These services include routine trimming, removals, and emergency tree services on an asneeded basis. The Street Department will remove all tree stumps and complete the necessary ground restoration.

The following bids were received on August 29, 2023. For reference, the previous contract pricing is listed in parentheses.

	Tree Trimming per Hour	Tree Removal per Hour	Emergency Work per Hour
Wonsey Tree Service Alma	\$130.00 (no bid)	\$210.00 (no bid)	\$260.00 (no bid)
Always There Tree Care Ithaca (first-time bidder)	\$150.00 (2 person crew) \$185.00 (3 person crew)	\$150.00 (2 person crew) \$188.00 (3 person crew)	\$255.00 (2 person crew) \$310.00 (3 person crew)
F & K's Tree Service Mt. Pleasant	\$200.00 (\$150.00)	\$300.00 (\$200.00)	\$450.00 (\$250.00)

Wonsey Tree Service is the low bidder for the tree trimming and removal bid. The Street Department last worked with Wonsey in 2016, and they were the City's awarded contract holder from 2011-2014. They are an established company with proven field expertise.

I recommend the City Commission award the contract for the 2024-2025 Tree Trimming and Removal bid to Wonsey Tree Service at the prices stated. Funds have been budgeted for the 2024 work. The future work will be included in the 2025 operating budget.

City of Mount Pleasant, Michigan DEPARTMENT OF PUBLIC SAFETY

DATE: September 25, 2023

TO: City Commission

FROM: Doug Lobsinger, Fire Chief and Neighborhood Resource Unit Coordinator

SUBJECT: Mt. Pleasant Area Community Foundation Grant

The Fire Department has submitted a grant request to the Mt. Pleasant Area Community Foundation (MPACF) for consideration to fund thermal imaging equipment. The grant request is for \$38,823. This is to replace existing thermal imaging units with new improved technologies. These Thermal Imagers are used to help identify unseen fire conditions, hot spots and search for people during no visibility conditions.

I have submitted a Grant Application Assurance form that requires the governing board to approve our request through the MPACF. I recommend to the City Commission authorize the Mayor to sign this form. Thank you in advance for your consideration.

Grant Application Assurance

The Mt. Pleasant Area Community Foundation manages more than 275 permanently endowed funds. These funds were created by families, individuals, businesses and organizations to address a particular charitable purpose in our community. Because these funds reflect the diverse interests of our community, they are able to provide grants to a wide variety of community programs. Community Foundation staff will match your request with those endowed funds whose charitable purpose would be served by awarding a grant to your program or project. Representatives of these funds will review your application and make grant recommendations to the Foundation's Board of Trustees. (You should not directly solicit any particular fund or fund representative.) The Board has the sole authority to authorize grants from the Mt. Pleasant Area Community Foundation. Monies for a single grant may come from more than one of the Community Foundation's endowed funds.

Applications must be reviewed and approved by an authorized official* of the applying organization. *For purposes of this award, an Authorized Financial Officer is an organization employee or board member with legal authority to accept money on behalf of the organization.

This application was approved by the governing board on: (Must be before the grant application due date)	_/_	<i></i>		
Organization Name:				
City of Mt. Pleasant				
Program/Project Name:				
Thermal Imaging Equipment				
Authorized Official of the Governing Board:				
Name (print):		Date: _	 	
Name (signature):				

City of Mt. Pleasant, Michigan

CITY HALL 320 W. Broadway • 48858 (989) 779-5300 (989) 773-4691 fax PUBLIC SAFETY 804 E. High • 48858 (989) 779-5100 (989) 773-4020 fax PUBLIC WORKS 320 W. Broadway • 48858 (989) 779-5400 (989) 772-6250 fax

September 8, 2023

TO: Aaron Desentz, City Manager

FROM: Stacie Tewari, City Engineer

SUBJECT: Approval of Authorization and Resolution for a Change in the Standard

Lighting Contract with Consumers Energy for the Pickard-Bradley

Intersection

In order to make room for the proposed traffic signal at the intersection of Pickard and Bradley Streets, Consumers Energy is requesting to remove the existing center suspension light over the intersection and replace it with two bracket LED streetlights. The streetlight removal and installation work will be completed by Consumers at no cost to the city. The city will be billed for the new streetlights at the LED rate.

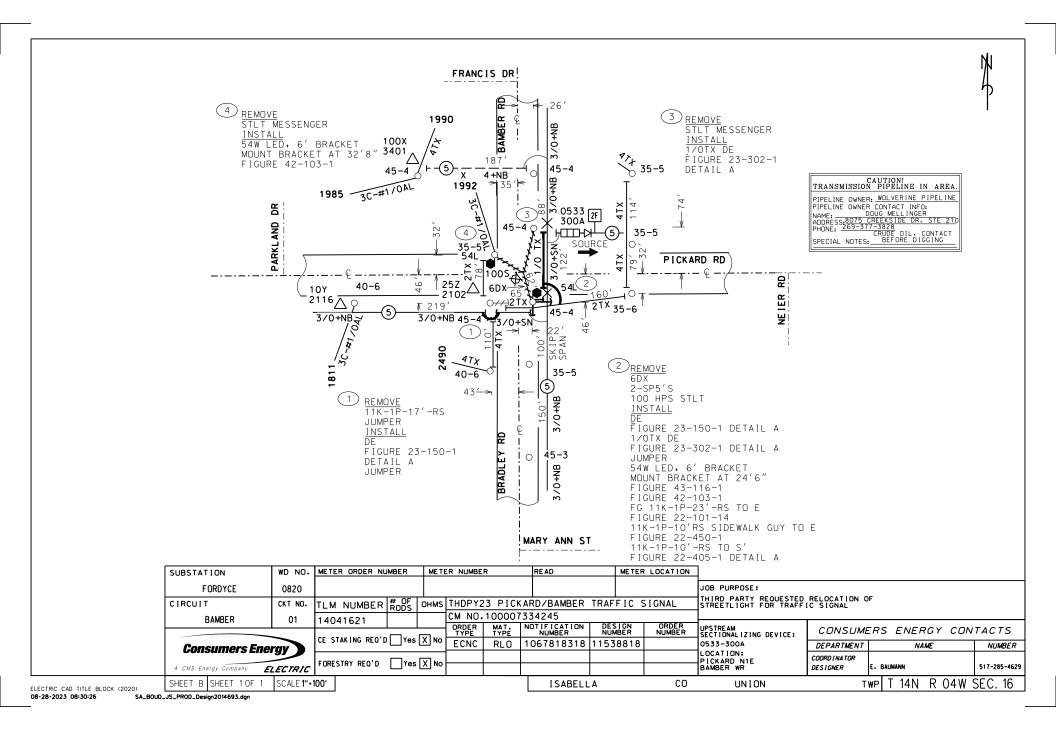
Consumers Energy requires approval of changes to the existing lighting contract prior to beginning this work. I recommend that the attached resolution and authorization be approved by the City Commission including authorization of the City Clerk to execute the documents on behalf of the city.

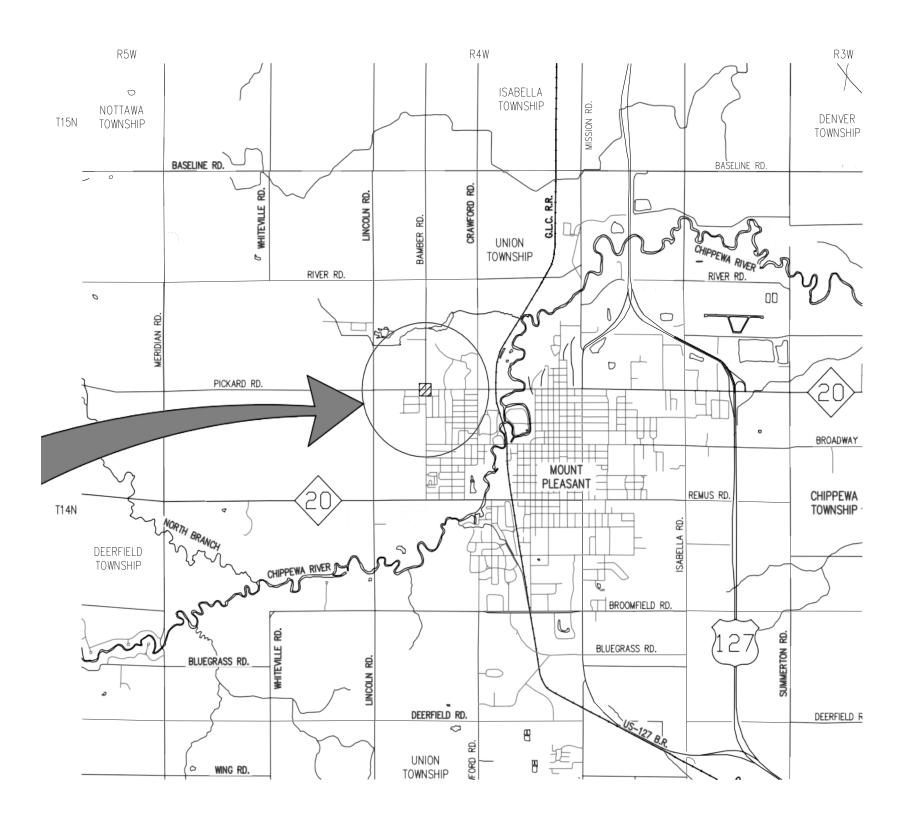
AUTHORIZATION FOR CHANGE IN STANDARD LIGHTING CONTRACT(COMPANY-OWNED) FORM 547

	(Title)
Its:	(riined)
	(Printed)
	(Signature)
By:	
	City of MT PLEASANT
Comments: Replacing center suspension light over intertwo bracket LED lights overhanging Pickard to make roo	·
Notification Number(s): 1067818318	
Except for the changes in the lighting system(s) as hereir Standard Lighting Contract dated 10/1/2014 shall remai	
Lighting Type: General Unmetered Light Emitting Diode I	Lighting Rate GU-LED
make changes, as listed below, in the lighting system(s) Contract between the Company and the City of MT PLE	covered by the existing Standard Lighting
Contract Number: 103017033103 Consumers Energy Company is authorized as of	by the City of MT PLEASANT to

This Agreement may be executed and delivered in counterparts, including by a facsimile or an electronic transmission thereof, each of which shall be deemed an original. Any document generated by the parties with respect to this Agreement, including this Agreement, may be imaged and stored electronically and introduced as evidence in any proceeding as if original business records. Neither party will object to the admissibility of such images as evidence in any proceeding on account of having been stored electronically.

RESOLUTION


RESOLVED, that it is hereby deemed advisable to authorize Consumers Energy Company to make changes in the lighting service as provided in the Standard Lighting Contract between the Company and the City of MT PLEASANT, dated 10/1/2014, in accordance with the Authorization for Change in Standard Lighting Contract dated
neretofore submitted to and considered by this \square commission \square council \square board; and
RESOLVED, further, that the Clerk be and are authorized to execute such authorization for change on the behalf of the City.
STATE OF MICHIGAN COUNTY OF ISABELLA
,, clerk of the City of MT PLEASANT do hereby certify that the foregoing esolution was duly adopted by the
\square commission \square council \square board of said municipality, at the meeting held on
Dated:
 Municipal Customer Type: City


GENERAL SERVICE UNMETERED LIGHTING RATE GUL, STANDARD HIGH INTENSITY DISCHARGE

• (1) 100 watt HPS Center Suspension NA to Remove at location 2490 E Pickard St.;

GENERAL UNMETERED LIGHT EMITTING DIODE LIGHTING RATE GU-LED

• (2) 54 watt LED Cobrahead NA to Install at location 2490 E Pickard St.;

Memorandum

TO: Aaron Desentz, City Manager

FROM: Michelle Sponseller, Downtown Development Director

CC: Chris Saladine, Finance Director

Phil Biscorner, Parks, Public Spaces and Recreation Director

Stacie Tewari, City Engineer

DATE: September 13, 2023

SUBJECT: 2024 Michigan Department Natural Resources (MI-DNR) Urban and Community

Forestry Program Grant Application and Resolution

- Town Center Civic Space Project

Staff is intending to apply for a Michigan Department Natural Resources (MI-DNR) Urban and Community Forestry Program grant for the proposed replacement trees as part of the Town Center Civic Space project. Although the MI-DNR does not require a resolution as part of the completed grant package, staff would like to include one to indicate the City Commission's support for the request.

Background of the grant application includes:

- Grant request for \$50,000 which includes:
 - Addition of 57 trees (maple and elm) = \$43,320;
 - Removal of 9 trees = \$6,680;
- Match of \$38,990 comes from funds already allocated towards the project for removal of the remaining 41 trees.

The pursuit of grants continues to be a resource to provide additional funds for capital projects. Staff reviews upcoming CIP projects and analyzes the best funding opportunities for our proposed projects.

The application deadline for the MI-DNR Urban and Community Forestry Program grant is October 13, 2023 and awards are announced by December 31, 2023. Staff is requesting the attached resolution be approved after review of the project.

REQUESTED ACTION

Approve the MI-DNR Urban and Community Forestry Program grant resolution as presented and direct staff to sign all grant documentation as necessary.

ATTACHMENTS

• Resolution for the MI-DNR Urban and Community Forestry Program grant.

RESOLUTION OF AUTHORIZATION MICHIGAN DEPARTMENT OF NATURAL RESOURCES URBAN AND COMMUNITY FORESTRY GRANT PROGRAM

WHEREAS, the City Commission of Mt. Pleasant supports the submission of an application titled, Town Center Civic Space Project Tree Replacement to the Michigan Department of Natural Resources Urban and Community Forestry Grant Program and,

WHEREAS, the City of Mt. Pleasant is hereby making a financial commitment to the project in the amount of \$38,990 in matching funds, and,

NOW THEREFORE, BE IT RESOLVED that City Commission hereby authorizes submission of a Michigan Department of Natural Resources Urban and Community Forestry Grant Program Application for \$50,000.

YES: AYES: BSENT:
OTION APPROVED.
HEREBY CERTIFY, that the foregoing is a Resolution duly made and passed by the Mt. Pleasan ty Commission at their regular meeting held on September 25, 2023, at 7:00 p.m. at 320 Wes coadway, Mt. Pleasant, Michigan with a quorum present.
Dated: erk

DIVISION OF PUBLIC SAFETY CITY OF MT. PLEASANT

804 E. High Street, Mount Pleasant, MI 48858 Phone: (989) 779-5100 Fax: (989) 773-4020

MEMORANDUM

DATE: September 11, 2023

TO: Aaron Desentz, City Manager

FROM: Paul Lauria, Director of Public Safety

SUBJECT: Snow and Ice Removal from Sidewalks Ordinance

During the 2024 Goals and Objectives process the City Commission set as one of their goals was to "Provide safe accommodations for pedestrians and bicyclists." During that meeting having property owners keep clear any sidewalk adjoining their property of snow and ice was discussed. It was determined that staff would prepare a draft ordinance for consideration by the City Commission. The draft ordinance is attached to this memorandum.

While considering this ordinance the following should be kept in mind:

- 1. The Downtown Principal Shopping District's (PSD) Special Assessment will remain the same. Downtown sidewalks, around municipal parking lots, will continued to be cleared by a private contractor. Downtown sidewalks, around/in front of private property, already has this requirement and requires no change.
- 2. The property owners along school routes are <u>NOT</u> exempt from this ordinance. The city will clear these routes only after the completion of street plowing.
- 3. The city will continue to clear any previously adopted areas of sidewalk (see attached map).
- 4. The Mission/Pickard Downtown Development Authority (DDA) along Mission and Pickard Streets already has this requirement and requires no change.
- 5. The recent adoption of the International Property Maintenance Code does not apply to public sidewalks.
- 6. Property owned or occupied by members of the Saginaw Chippewa Indian Tribe that are within the recognized area of the Reservation are exempt from direct enforcement of this ordinance. Any violation(s) must be handled by the Tribal Planning Department through Tribal Court.

Website: www.mt-pleasant.org

Prior to implementation we will do public outreach and notifications on the city's website and social media platforms. Consideration has been made to do mailings regarding this change if adopted as well.

Enforcement of this ordinance will primarily be the responsibility of Code Enforcement Officers. When violations occur property owners will be educated and given a warning on the new ordinance. Any repeat violations may result in a citation. Portions of sidewalk that remain uncleaned for periods of time may be cleaned by the city. Any and all costs associated with the city performing the work will be passed onto the property owner.

It is the sole responsibility of the property owner to make sure they stay in compliance with this ordinance.

CITY COMMISSION CITY OF MOUNT PLEASANT

Isabella County, Michigan

	Ordinance No. 23	
Commissioner	, supported by Commissioner	, moved for adoption
	of the following ordinance:	-

AN ORDINANCE TO AMEND THE CITY SNOW AND ICE REMOVAL FROM SIDEWALKS ORDINANCE

THE CITY OF MT. PLEASANT ORDAINS:

Section 1. Amendment to Section 98.37.

Section 98.37 of the City Code entitled "Snow and Ice Removal From Sidewalks" is amended to read, in its entirety, as follows:

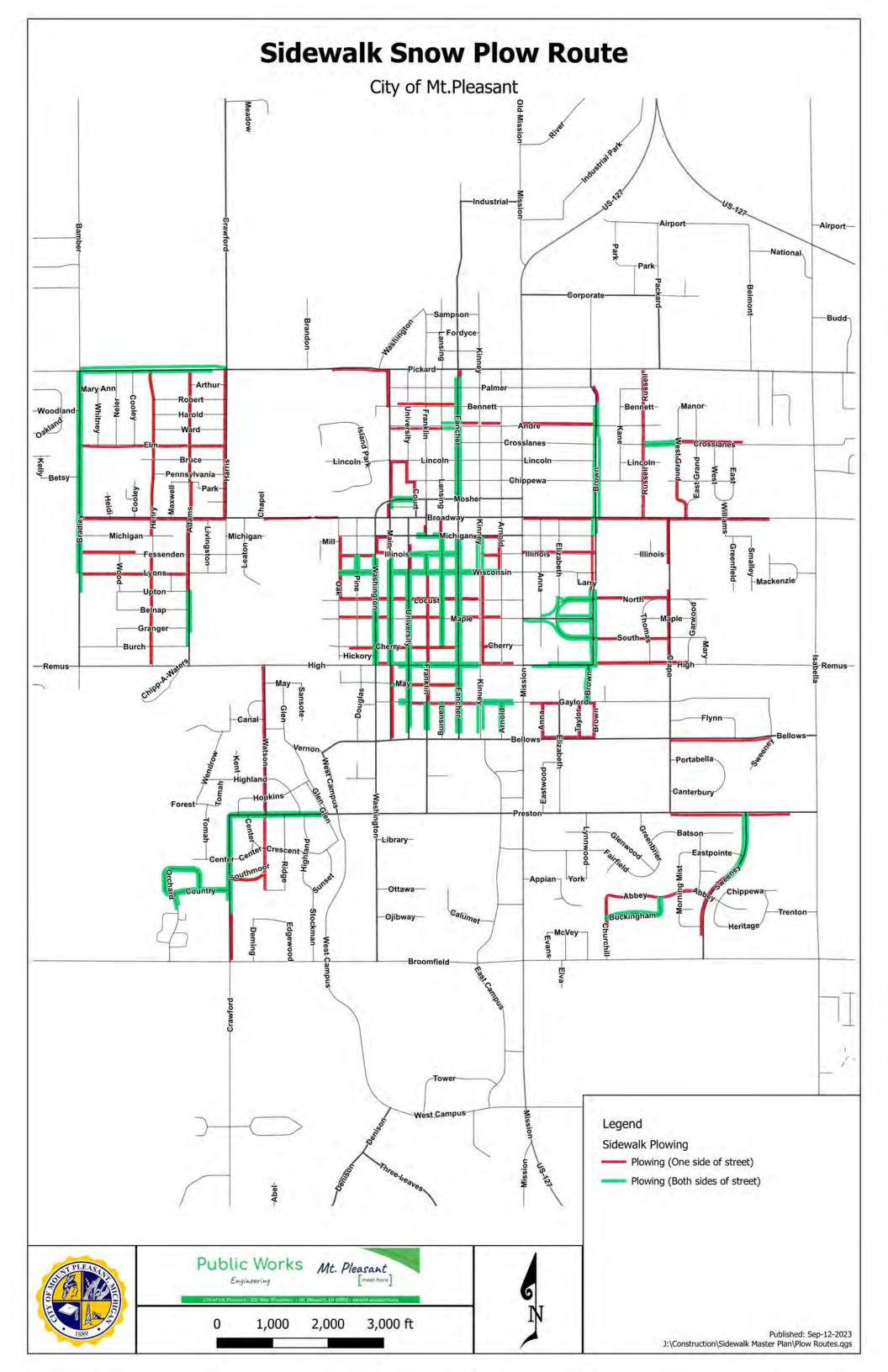
Section 98.37: Snow and Ice Removal From Sidewalks.

- (A) For the purposes of this Section, "owner" means an owner, owners, occupant, or occupants of real property.
- (B) The owner of every property within the City must clear any accumulation of ice or snow from the public sidewalks adjoining such property within 24 hours of the accumulation or placement of snow or ice on said sidewalks.
- (C) If a sidewalk is not cleared within 24 hours of the accumulation or placement of snow or ice, the City may issue the owner a civil infraction ticket that is a personal debt owed to the City for each day that the owner fails to clear the sidewalk, or the City may clear the sidewalk and impose a lien on the property for the cost of clearing the sidewalk. The City Commission must set the civil infraction fees and the amount of any lien under this subsection by resolution.

Section 2. Repealer.

Any and all Ordinances in conflict with this Ordinance are repealed to the extent necessary to give this Ordinance full force and effect.

Section 3. Severability.


If any portion or portions of this Ordinance are found invalid, the remainder of the Ordinance will remain in full force and effect.

Section 4. Publication and Effective Date.

The City Clerk will cause to be published a notice of adoption of this Ordinance within 10 days of the date of adoption. This Ordinance will take effect 30 days after its adoption.

85714:00001:7154538-2

Memorandum

TO: Aaron Desentz, City Manager

FROM: Michelle, Sponseller, Downtown Development Director

DATE: September 12, 2023

SUBJECT: Request To Set A Public Hearing – Parking Ordinance Update

As part of the evaluation of parking enforcement in February 2023, staff recommended an in-depth reassessment of the parking ordinance (Chapter 71), given its original drafting in 1964. After careful examination, the staff determined that a complete rewrite of the chapter would be more effective than making piecemeal modifications, given the updates required.

Highlights of the new parking ordinance are as follows:

- 1. Revamped definitions, encompassing terms such as dumpsters, construction trailers, and recreational vehicle parking.
- 2. The transition from the "even/odd" overnight parking system to one that aligns more closely with the existing snow emergency protocol, driven by the dual aim of operational efficiency and enhancing resident convenience by simplifying the process for residents, requiring them to relocate their vehicles only as needed rather than every evening.
 - As part of our permitting process, we collect contact details to ensure residents can be promptly notified during such times.
- 3. Recording of special agreements with:
 - Feight Apartments (119 South Franklin) sanctioned by the City Commission on February 2, 1987.
 - Michigan Community Capital (410 West Broadway) documented on January 29, 2020.
- 4. Incorporation of electric car charging station regulations.

Requested Action:

Staff requests setting a public hearing for October 9, 2023 on the parking ordinance update.

City of Mt. Pleasant

Ordinance No. 23-

An Ordinance to Amend the City Parking Ordinance

THE CITY OF MT. PLEASANT ORDAINS:

Section 1. Amendment to Chapter 71 of the City Code.

Chapter 71 of the City Code is amended to read as follows:

Section 71.01. Purpose and Scope.

The purpose of this Chapter is to regulate parking in the City. This Chapter applies to all public roads and parking lots in the City and as otherwise indicated herein.

Section 71.02. Definitions.

"Central Business District" or "Downtown" means the area with the following legal description:

Commencing at the intersection of the North right-of-way line of Illinois Street and the West right-of-way line of Washington Street; thence East, along said North right-of-way line of Illinois Street, to the West right-of-way line of Lansing Street; thence North, along said West right-of-way line of Lansing Street, to the North right-of-way line of Mosher Street; thence West, along said North right-of-way line of Mosher Street, to the West right-of-way line of Main Street; thence South, along said West right-of-way line of Main Street, to the midpoint on the East line of Lot 5, Block 14 of the Original Plat; thence West along the North line of the South 1/2 of said Lot 5, Block 14 of the Original Plat, extended to a point 40.8 feet West of the West line of said Lot 5, Block 14 of the Original Plat; thence Southwesterly, along a curve to the left, to a point on the North right-of-way line of Broadway, lying 122.04 feet West of the Southwest corner of Lot 1, Block 14 of the Original Plat; thence West, along the North right-ofway of Broadway Street, 113.96 feet to a point 203 feet West and 43.75 feet North of the Interior 1/4 Corner (Center) of Section 15, T14N-R4W; thence North, 231.31 feet, to the Southerly line of the former Ann Arbor Railroad spur right-of-way line; thence Northeasterly, along said Southerly right-of-way line of the former Railroad spur, to the North-South 1/4 line of said Section 15; thence North, along said North-South 1/4 line to the top bank traverse line of the Chippewa River; thence Southwesterly, along said traverse line, to the centerline of Oak Street, extended; thence South, along said centerline of Oak Street, extended, to the North right-of-way line of Broadway Street; thence West, along said North right-of-way line of Broadway Street, to the West right-of-way of Walnut Street, extended; thence South, along said West line of Walnut Street, extended, to a point being 82.5 feet South of the East-West 1/4 line of said Section 15; thence East, to a point on the West right-of-way line of Oak Street, lying 82.5 feet South of the intersection of said West right-of-way line Oak Street and said East-West 1/4 line; thence South, along said West right-of-way line of Oak Street, to the South right-of-way line of Michigan Street; thence East, along said South right-of-way line of Michigan Street, to the West right-of-way line of Washington Street; thence South, along said West right-of-way line of Washington Street, to the North right-of-way line of Illinois Street and the point of beginning.

The area can also be described as within the following boundaries:

- North of the North side of Illinois Street:
- West of the West side of Lansing Street;
- South of the North side of Mosher Street:
- East of the West side of Main Street:
- South of the North side of Broadway Street;
- East of the West side of Walnut Street, extended;
- East of the West side of Oak Street;
- North of the South side of Michigan Street;
- East of the West side of Washington Street;
- Southeasterly of the center thread of the Chippewa River

City Manager means the City Manager or his or her designee.

Park means to cause, allow, permit, or suffer any vehicle to stand or be parked.

Recreational Vehicle (RV) means a vehicle that has its own motive power or is towed by a motor vehicle; is primarily designed to provide temporary living quarters for recreational, camping, travel, or seasonal use; complies with all applicable federal vehicle regulations; and does not require a special highway movement permit under section 719a to be operated or towed on a street or highway. The term includes, but is not limited to, a motor home, travel trailer, park model trailer that does not require a special highway movement permit under section 719a, or pickup camper. See MCL 257.49a.

Dumpster means a large trash receptacle designed to be hoisted and emptied into a truck.

Motor Vehicle is defined for the purposes of this Ordinance it is in MCL 257.33. It means every vehicle that is self-propelled, except for the following

- A. industrial equipment such as a forklift, a front-end loader, or other construction equipment that is not subject to registration under the motor vehicle code.
- B. a power-driven mobility device when that power-driven mobility device is being used by an individual with a mobility disability.

- C. an electric patrol vehicle being operated in compliance with the electric patrol vehicle act, 1997 PA 55, MCL 257.1571 to 257.1577.
- D. an electric personal assistive mobility device.
- E. e an electric carriage.
- F. a commercial quadricycle.
- G. an electric bicycle.
- H. an electric skateboard.

Section 71.03. Parking Restrictions.

- A. *Prohibition Of Parking In Certain Areas*. No person may park a motor vehicle in any of the following places except when necessary to avoid conflict with other traffic, in compliance with law or the directions of a police officer or traffic control device, or when a permit has been granted by the City Manager:
 - 1. On a sidewalk.
 - 2. In front of or across a public or private driveway.
 - 3. Within an intersection.
 - 4. Within three (3') feet of a fire hydrant.
 - 5. On any portion of a fire lane, unless permitted by the City Manager.
 - 6. In any place or in any manner so as to obstruct the immediate egress from an emergency exist of a building or a designated fire escape.
 - 7. Between a curb and a sidewalk.
 - 8. In a side or front yard in a residential district.
 - 9. ADA spaces will be in compliance with all State of Michigan codes.
 - 10. Without a permit in a space designated as permit parking only.
- B. *Prohibitions on Method of Parking in Certain Areas*. The following methods of parking are prohibited where specified:
 - 1. With a vehicle's left wheels nearest to the curb, except on one-way roadways where parking is permitted on the left side of the roadway.
 - 2. Back-in parking, in any angled parking spot.
- C. Time Restrictions For Parking In Certain Areas.
 - 1. No person may park overtime beyond the period of legal parking time identified by regulatory sign.

2. No person may park any vehicle on any street in the Central Business District between the hours of 4:00 a.m. to 6:00 a.m. during any day of the year:

3. Snow Emergencies.

- a) No person may park or leave any vehicle, RV, construction trailer, or dumpster on a street or highway in the City when a snow emergency is in effect.
- b) The City Manager may declare a snow emergency after making a finding that, on the basis of falling snow, sleet, or freezing rain, or based on a National Weather Service forecast, weather conditions will make it necessary that motor vehicle traffic be expedited and that parking on city streets will be prohibited or restricted for plowing or other purposes. A snow emergency must be publicly announced prior to its effective time by means of press release, web posting, telephone information line, and/or emergency communications system where feasible.
- c) Once in effect, a snow emergency remains in effect until terminated by an announcement of the City Manager in the same manner in which it was declared.

D. Restrictions On Parking Of Certain Vehicles And Use of City Right Of Way.

1. Stalled or Disabled Vehicles.

- a) Whenever a vehicle becomes stalled or disabled for any reason on any portion of a City street to which a parking prohibition applies, the person operating the vehicle shall take immediate action to have the vehicle towed or pushed off the street.
- b) No person may abandon or leave a vehicle on a City street, except for the purpose of securing assistance during the actual time necessary to go to a nearby telephone, garage, automobile service station, or other place of assistance and return without delay.

2. Dumpsters.

a) No dumpster may be left overnight on any street, alley, parking lot, highway, or other public place unless authorized by the Director of Public Works. The Director of Public Works may provide for the issuance of a temporary dumpster permit for parking and use of a dumpster on public grounds owned or controlled by the City, on such order and conditions as the City Manager shall, in his/her discretion, determine to be just and reasonable, for a period of time not to exceed ten days in any one calendar year.

3. Recreational Vehicles - (RV)

- a) A Recreational Vehicle may be parked, used, or occupied on the premises of a dwelling only if the occupants of the RV have access to and the unlimited use of the sanitary facilities of the dwelling and the operator of the RV secures a permit as provided by this Chapter.
- b) No Recreational Vehicle may be parked overnight on any street, alley, parking lot, highway, or other public place unless authorized by the Building Official. The Building Official may provide for the issuance of temporary RV permit, for parking, use, and occupancy of recreational vehicle on public grounds owned or controlled by the City, on such order and conditions as the City Manager shall, in his/her discretion, determine to be just and reasonable, for a period of time not to exceed ten days in any one calendar year.
- c) No Recreational Vehicle may be parked at any time between the established setback line and the curb line of any lot.
- d) No person may park or permit the occupancy of any Recreational Vehicle on a lot, field, or tract of land not specifically licensed as a campground, except only as provided by this Chapter.

Section 71.04. Parking Permits.

A. *Fees, Eligibility, and Designation*. The City Commission shall by resolution set the cost of parking permits, the eligibility requirements for each type, and the designation of lots and streets where parking is allowed by permit only.

B. Types of Permits.

- 1. Overnight. Overnight parking in the Central Business District is restricted to holders of an overnight permit. Overnight permit holders may only park in designated lots.
 - a. The City Manager may declare it necessary, on the basis of falling snow, sleet, or freezing rain, or based on a National Weather Service forecast, weather conditions will make it necessary that motor vehicle traffic be expedited and that parking in city parking lots will be prohibited or restricted for plowing or other purposes. This declaration must be publicly announced prior to its effective time by means of press release, web posting, email, and telephone information line where feasible.
- 2. Guest. Guest permits are required of guests visiting downtown residents wishing to park in a downtown lot overnight and of guests of residents of designated

residential neighborhoods wishing to park overnight on any street in a designated residential neighborhood. Guest permits are limited to seven days.

- a. The City Manager may declare it necessary, on the basis of falling snow, sleet, or freezing rain, or based on a National Weather Service forecast, weather conditions will make it necessary that motor vehicle traffic be expedited and that parking in city parking lots will be prohibited or restricted for plowing or other purposes. This declaration must be publicly announced prior to its effective time by means of press release, web posting, email, and telephone information line where feasible.
- 3. Residential Neighborhood. Residential Neighborhood permits are available to property owners and tenants in designated residential neighborhood permit zones.
- 4. Recreational Vehicles. The owner, occupant, or user of a recreational vehicle to be parked in the City and in a City lot must procure a permit as prescribed in Section 71.04(D).
- 5. Construction Trailer. Construction trailer permits, issued by the Building Official, are intended for use by construction companies and personnel during a specific construction project, to utilize space in a municipal parking lot or the use of on-street parking space/s. The permit will be valid for the duration of the project. The permit shall specify the parking location(s) for which it is valid.
- 6. Commercial. Commercial permits are intended for use by City businesses that require parking of vehicles primarily used for business purposes in the City and allow daytime and overnight parking in streets, spaces, or lots designated by the City Manager.

C. Use of Permits.

- 1. Permits are only valid according to their type and do not permit a driver to park outside the scope of the permit.
- 2. As necessary from time to time, the City Manager or his/her designee may contact permit holders to move their vehicle(s) so that lots may be cleaned. Failure to move a vehicle as requested constitutes a violation of this Chapter.

D. Recreational Vehicles.

- 1. An application for a permit to park, use, and occupy a recreational vehicle on the premises of a dwelling or parcel of land must be made to the Department of Building Safety.
 - a. The application must

- i) state the name of the owner or occupant in control of the trailer coach,
- ii) the name and address of the owner or operator of the recreational vehicle,
- iii) the license number on the recreational vehicle, and
- iv) the required fee, if one has been set.
- b.Attached to the application must be written consent by the owner in control of the dwelling or parcel of land at which the recreational vehicle will park and be used and occupied for the persons using the trailer coach the unlimited use of the sanitary facilities on the premises.
- c. Upon the filing of the application, the Department must cause an inspection to be made of the dwelling premises or parcel of land and the recreational vehicle. If the inspection finds that adequate facilities are afforded on the premises for the disposal of waste created and it appears that the parking, use, and occupancy of the trailer coach complies with applicable statutes and ordinances, approval will be granted.
- d.After the application is approved and the permit fee is paid, the Building Official shall issue a permit starting the limit of time for the parking, use, or occupancy of the trailer coach. The permit may authorize the parking, use, or occupancy of the trailer coach for not more than six weeks.
- e. No more than two permits may be issued for any one trailer coach or to any one trailer coach operator or occupant in one 12-month period.
- 2. The Building Official may provide for the issuance of temporary RV permit, for parking, use, and occupancy of recreational vehicle on public grounds owned or controlled by the City, on such order and conditions as the City Manager shall, in his/her discretion, determine to be just and reasonable, for a period of time not to exceed ten days in any one calendar year.
- 3. The Building Official or his or her authorized representative or a member of the Department of Public Safety has the authority to enter and inspect at any reasonable time any premises upon which a recreational vehicle is parked, used, or occupied for the purpose of ascertaining that the owner, operator, or occupant of the trailer coach is complying with all applicable statutes, ordinances, rules, and regulations.

E. Special Agreements.

- 1. Feight Apartments (119 South Franklin). Eight parking spaces for 24-hour parking shall be reserved in the City-owned parking lot on the corner of E. Michigan and S. Lansing Street for tenants of Feight Apartments.
- 2. *MCC Parcel B Title Holding Corporation (410 West Broadway)*. MCC Parcel B Title Holding Corporation and its agents, employees, tenants, licensees, permittees, and contractors shall enjoy the rights granted to it by the Parking and Access Easement recorded at 1877 Liber 310.

Section 71.05. Electric Vehicle Charging Stations.

- A. Public electric vehicle charging stations are reserved for parking and charging electric vehicles. Electric vehicles may be parked in any space designated for public parking, subject to the restrictions that apply to any other vehicle.
- B. When a sign provides notice that a parking space is a publicly designated electric vehicle charging station, no person shall park or stand any non-electric vehicle in a designated electric vehicle charging station space. Further, no person shall park or stand an electric vehicle in a publicly designated electric vehicle charging station space when not electrically charging or parked beyond the days and hours designated on the regulatory signs posted. For purposes of this section, "charging" means an electric vehicle parked at an electric vehicle charging station and connected to the charging station equipment.

Section 71.06. Enforcement.

- A. *Enforcement Personnel*. A civil infraction citation for any parking violation may be issued by any authorized personnel.
- B. *Parking Violations Bureau*. The Parking Violations Bureau, under the supervision and control of the City Manager, is tasked with handling alleged violations of the schedule enumerated in Section 71.06(I). The Bureau's authority is limited to enforcement of this Chapter.
- C. *Ongoing Violations*. Each and every day and hour during which a violation of the Uniform Traffic Code and other provisions of this Chapter continues is a separate, distinct, and independent offense.
- D. *Operator As Violator*. A police officer or the Parking Violations Bureau may issue a citation for the violation to the operator of the vehicle if the operator is present at the time of the violation.
- E. *Administrative fee*. An administrative fee must be added to each account for each notice sent for delinquent parking fines. The City Commission must set the administrative fee by resolution.

- F. *Civil Infraction*. Any person that violates any provision of this Chapter is responsible for a civil infraction.
- G. Contents of citation. The citation must indicate:
 - 1. the length of time in which the person to whom the citation was issued must respond before the Parking Violations Bureau,
 - 2. the address of the Bureau,
 - 3. the hours during which the Bureau is open,
 - 4. the amount of the penalty scheduled for the offense for which the ticket was issued, and
 - 5. advise that a warrant for the arrest of the person to whom the ticket was issued will be sought if the person fails to respond within the time limited.
- H. *Effect of Citation*. The issuance of a citation by a police officer or the Parking Violations Bureau is an allegation of a parking violation.
- I. *Schedule of Violations*. The fine for violation of a municipal civil infraction under this Chapter must be set by resolution by the City Commission.
- J. Disposition of Claims.
 - 1. Only violations that are scheduled in Section 71.06(I) may be disposed of by the Parking Violations Bureau.
 - 2. The fact that a particular violation appears on the fine schedule, as adopted by the City Commission, does not entitle the alleged violator to disposition of the violation at the Bureau. If the Bureau declines to dispose of a violation, the violation must be disposed of before a court having jurisdiction and any person having knowledge of the facts may make a sworn complaint as provided by law.
 - 3. No violation may be settled at the Parking Violations Bureau except at the specific request of the alleged violator.
 - 4. The Bureau may not accept a penalty for any violation from any person who denies having committed the offense. The Bureau may not determine, or attempt to determine, the truth or falsity of any fact or matter related to the alleged violation.
- K. *Prima Facie Evidence*. In any proceeding for a violation of this Chapter, proof that the vehicle described in the citation was parked in violation of this Chapter and that the defendant named in the citation was, at the time of parking, the registered owner of the vehicle, is prima facie evidence that the registered owner violated this Chapter.

- L. *Conflict of Provisions*. Any temporary prohibition or regulation of parking declared by the City Manager under this Chapter, while in effect, supersedes any conflicting provisions, except for laws applicable to traffic accidents, emergency travel of authorized emergency vehicles, or emergency traffic directions ordered by a police officer.
- M. *Relationship to Other Laws*. No provision of this Chapter may be construed to permit parking at any time or place where it is forbidden by any other law.

Section 2. Repealer.

Any and all ordinances in conflict with this Ordinance are repealed to the extent necessary to give this Ordinance full force and effect.

Section 3. Severability.

If any portion or portions of this Ordinance are found invalid, the remainder of the Ordinance will remain in full force and effect.

Section 4. Publication and Effective Date.

The City Clerk will publish a notice of adoption of this ordinance within 10 days of the date of its adoption. This ordinance will take effect 30 days after its adoption.

85714:00001:7075134-1

MEMO TO: Aaron Desentz, City Manager

FROM: Mike Kurbel, Information Technology Director

DATE: September 11, 2023

SUBJECT: 2023 Firewall Replacement

Reason:

The City had planned to replace the network firewall in 2024, as part of a larger network upgrade, but due to a special limited time offer from Fortinet, we would like to amend the budget and purchase it before the offer expires at the end of October.

The below is a breakdown on what it would cost for the new firewall, labor and three years support compared to three years support on our current device:

Replacement Firewall (3 year support and labor

	Current Support	included)
2024	\$2,800.00	\$12,290.00
2025	\$2,950.00	
2026	\$3,100.00	

Total	\$8,850.00	\$12,290.00

The difference comes out to \$3,440 for the 201F firewall. If you subtract \$1,500 in labor from the \$3,440 difference, the total device price comes to \$1,940. This price is cheaper than the MSRP of \$4,400 for a 201F. We are saving \$2,460 by buying the firewall now.

Recommendation:

The City Commission is requested to approve a budget amendment to purchase a new firewall, labor and three year's support for \$12,290.

TO: Aaron Desentz

City Manager

FROM: Manuela Powidayko

Director of Planning and Community Development

DATE: September 25, 2023

SUBJECT: Text Change 23-01

As explained in the attached staff memorandum, the proposed ordinance would make the following changes to the manner in which driveway widths are regulated:

- 1. Increase the maximum driveway width from 24 to 30 feet along Pickard, Mission and High Street (west of Mission) within CD-4 (General Urban) and CD-5 (Urban Center) Character Districts.
- 2. Permit driveways wider than 30 feet along MDOT's routes to accommodate specific site designs, if the applicant incorporates increased pedestrian safety measures;
- 3. Increase the maximum driveway width for residential development from 10 to 18 feet within CD-4 districts to match the standards in CD-3L (Sub-Urban Large Lot) and CD-3 (Sub-Urban) Character Districts.

The Planning Commission held a public hearing on the proposed ordinance on September 7, 2023. There were no public comments on the subject. Following the public hearing, the Planning Commission recommended that the City Commission adopt Text Change 23-01.

REQUESTED ACTION:

The City Commission receive the Planning Commission recommendation and set a public hearing on the proposed text change for October 23, 2023.

Attachments:

- 1. Draft ordinance
- 2. Staff memorandum from September 7, 2023

CITY COMMISSION CITY OF MOUNT PLEASANT

Isabella County, Michigan

	7, 3
Commissione ordinance:	er, supported by Commissioner, moved adoption of the following
	ORDINANCE NO
AND	ORDINANCE TO AMEND TABLE 154.405.A DISTRICT STANDARDS: CD-4 GENERAL URBAN CD-5 URBAN CENTER CHARACTER DISTRICTS OF THE MOUNT PLEASANT ZONING INANCES REGARDING DRIVEWAY WIDTHS.
It is Hereby C	Ordained by the People of the City of Mount Pleasant:
	nendment to Table. The portions within Table 154.405.A District Standards: CD-4 General Urban Character ning to Vehicular Parking Standards – Driveway/Vehicular Entrance Maximum Width is amended to read as
Gene	erally, 18 ft max in 1st Lot Layer if Residential; 24 ft max in 1st Lot Layer if non-Residential, regardless if
If nor where circur	ed or not. n-Residential and along Pickard, Mission and High Street (west of Mission): may be 30 ft max. Along Thoroughfares the Michigan Department of Transportation has jurisdiction and requires a width exceeding 30 ft. because of instances relating to safety that are unique to the lot and its use: may exceed 30 ft, provided that the driveway is designed manner so as to increase pedestrian safety to the extent reasonably possible.
	mendment to Table. The portions within Table 154.405.A District Standards: CD-5 Urban Center Character ning to Vehicular Parking Standards – Driveway/Vehicular Entrance Maximum Width is amended to read as
If nor where circur	erally, 24 ft max in 1st Lot Layer and 2nd Lot Layer regardless if shared or not. n-Residential and along Pickard, Mission and High Street (west of Mission): may be 30 ft max. Along Thoroughfares the Michigan Department of Transportation has jurisdiction and requires a width exceeding 30 ft. because of instances relating to safety that are unique to the lot and its use: may exceed 30 ft, provided that the driveway is designed manner so as to increase pedestrian safety to the extent reasonably possible.
	ublication and Effective Date. The City Clerk shall cause to be published a notice of adoption of this hin 10 days of the date of its adoption. This ordinance shall take effect 30 days after its adoption.
YEAS:	Commissioner(s)
NAYS:	Commissioner(s)
ABSTAIN:	Commissioner(s)
ABSENT:	Commissioner(s)
	<u>CERTIFICATION</u>
	elerk of the City of Mount Pleasant, Isabella County, Michigan, I certify this is a true and complete copy of an opted by the Mount Pleasant City Commission at a regular meeting held on, 2023.
	Amy Perschbacher, Mayor
	Heather Bouck, City Clerk
PC Hearing:	, 2023
Introduced:	, 2023
Adopted: Published:	, 2023 , 2023
Effective:	

TO: Planning Commission

FROM: Manuela Powidayko

Director of Planning and Community Development

DATE: September 7, 2023

SUBJECT: TC-23-01 – Driveway Widths

At the work session in April, the Planning Commission heard an update about *Zoning for Economic Opportunity* ("ZEO"), when staff summarized the feedback received during the project's outreach process and the Planning Commission adopted a draft schedule of work sessions for the years of 2023 and 2024. ZEO participants recommended to add flexibility with existing driveway width requirements to (1) allow for better truck access in certain situations, and (2) to ensure that the zoning ordinance is not in conflict with requirements from the Michigan Department of Transportation (MDOT), which may require wider driveways in certain situations along Thoroughfares that MDOT has jurisdiction over: Mission Street, High Street (west of Mission) and Pickard Road (east of Mission). At your June and August meetings (work session and text amendment introduction, respectively), the Planning Commission discussed, provided direction and reached general consensus to support the attached draft text amendment.

Driveway widths are currently limited to a maximum of 24 feet in the CD-4 (General Urban) and CD-5 (Urban Center) Character Districts. This limit was imposed to help advance the goal in the City's Master Plan to make Mt Pleasant more walkable. More specifically to Mission, the Master Plan called for reducing traffic speeds while still maintaining a safe and efficient traffic flow. Narrower driveways, combined with creating more cross-access connections between businesses and encourage driveways to be combined will help reduce the number of crossings and increase pedestrian safety in the corridor.

While 24 feet of maximum width is a good standard to ensure that pedestrians are not having to cross wide driveways, MDOT has been requiring 30 feet in most cases as that is their design standard for two-way driveways along Thoroughfares like Mission Street across the State to ensure that rear-end accidents are avoided when vehicles slow down to access a site through the driveway. The City's Department of Public Works is also in agreement that 30-foot driveways may be more suitable along busier Thoroughfares. Therefore, the City worked with MDOT and Public Works on a zoning text amendment draft, which would allow for driveways to be 30 feet wide along Pickard, Mission and High Street (west of Mission). In particular instances, MDOT may require wider driveways to accommodate specific site designs (for example: if a particular use foresees large trucks coming in and out of the site frequently). In those cases, the zoning text would allow for a wider driveway along MDOT's routes, if the applicant incorporates increased pedestrian safety designs. Examples of solutions include, but are not limited to: the reduction in the number of driveways within a site, the combination of driveways between adjacent sites, the incorporation of materials and elevation of the pedestrian way at grade (forcing vehicles to yield), or the addition of a median refuge island to shorten the crossing.

Ultimately the proposed text amendment would codify existing practice by acknowledging engineering principles while balancing that with the City's vision for more inclusive and safe streets for all legal users of the right-of-way. The proposed text amendment also includes allowing residential development to design 18-foot wide driveways within CD-4 Districts to match the standard in CD-3L and CD-3 districts.

Requested Action:

Recommend that the City Commission adopt Text Change 23-01.

Attachment

1. Draft ordinance

TO: Aaron Desentz

City Manager

FROM: Manuela Powidayko

Director of Planning and Community Development

DATE: September 25, 2023

SUBJECT: Text Change 23-02

As explained in the attached staff memorandum, the proposed ordinance would make the following changes to the manner in which institutional uses are regulated:

- 1. Permit transitional housing (with more than 16 occupants) pursuant to a Special Use Permit within CD-4 (General Urban) and CD-5 (Urban Center) Character Districts;
- 2. Permit transitional housing (with 16 occupants or less) by-right within CD-3L (Sub-Urban Large Lot), CD-3 (Sub-Urban), CD-4 and CD-5 Districts;
- 3. Permit medical offices by-right and outpatient, urgent and emergency care facilities pursuant to a Special Use Permit within SD-RC (Research Center) Special Districts;
- 4. Permit adult day care centers by-right within CD-3L, CD-3, CD-4 and CD-5 districts.

The Planning Commission held a public hearing on the proposed ordinance on September 7, 2023. There were no public comments on the subject. Following the public hearing, the Planning Commission recommended that the City Commission adopt Text Change 23-02.

REQUESTED ACTION:

The City Commission receive the Planning Commission recommendation and set a public hearing on the proposed text change for October 23, 2023.

Attachments:

- 1. Draft ordinance
- 2. Staff memorandum from September 7, 2023

CITY COMMISSION CITY OF MOUNT PLEASANT

Isabella County, Michigan

Commissionerordinance:	, supported by Commissioner	, moved adoption of the following
	ORDINANCE NO	

AN ORDINANCE TO AMEND TABLE 154.410.A BUILDING AND LOT PRINCIPAL USE, SECTION 154.410.B. SPECIAL USES, AND ARTICLE VII OF THE MOUNT PLEASANT ZONING ORDINANCES REGARDING INSTITUTIONAL USES.

It is Hereby Ordained by the People of the City of Mount Pleasant:

Section 1. <u>Addition</u>. A new subsection 154.410.B.4.x is added to the Mount Pleasant Zoning Ordinances to read as follows:

- x. Transitional Housing must comply with the following:
- i. District Density limitations set forth in Table 154.405.A District Standards may be exceeded, provided that the Building area or part thereof, reserved for overnight accommodations, does not exceed 40 square feet per occupant.

Section 2. <u>Renumbering</u>. The subsection currently labeled 154.410.B.4.x, which provides special use standards for Two-Family Dwellings, and all subsequent subsections within subsection 154.410.B.4 are renumbered to accommodate the new subsection provided above.

Section 3. <u>Amendment to Table</u>. The portion of Table 154.410.A Residential / Dwelling Uses is amended to indicate that "Transitional Housing" with 16 or fewer occupants is permitted as-of-right in the CD-3L, CD-3, CD-4, and CD-5 districts. Accordingly, that portion of the table shall appear as follows:

District	CD-3L	CD-3	CD-4	CD-5	SD-H	SD-I	SD-RC	SD-A	CZ
Transitional Housing	Р	Р	P	Р		Þ			
with 16 or fewer									
occupants									

Section 4. <u>Amendment to Table</u>. The portion of Table 154.410.A Educational / Institutional / Civic Uses is amended to indicate that "Transitional Housing" with more than 16 occupants is permitted pursuant to a Special Use Permit within CD-4 and CD-5 districts and that "Adult Day Care Centers" are permitted as-of-right in CD-3L, CD-3, CD-4 and CD-5 districts. Accordingly, that portion of the table shall appear as follows:

District	CD-3L	CD-3	CD-4	CD-5	SD-H	SD-I	SD-RC	SD-A	CZ
Transitional Housing			SUP	SUP					
with more than 16									
occupants									
Adult Day Care Center	Р	Р	Р	Р					

Section 5. <u>Amendment to Table</u>. The portion of Table 154.410.A Medical Uses is amended to permit "Medical and dental offices" and "Outpatient surgical centers, urgent care facilities, and standalone emergency room facilities" in the SD-RC district, either as-of-right or pursuant to a Special Use Permit, respectively. Accordingly, that portion of the table shall appear as follows:

District	CD-3L	CD-3	CD-4	CD-5	SD-H	SD-I	SD-RC	SD-A	CZ
Medical and dental			Р	Р	Р		Р		
offices									
Outpatient surgical			SUP	SUP	Р		SUP		
centers, urgent care									
facilities, and									
standalone									
emergency room									
facilities									

Section 6. <u>Addition</u>. A new definition of "Adult Day Care Center" is added in Article VII: Definitions of the Mount Pleasant Zoning Ordinances to read as follows:

Adult Day Care Center: A facility that provides care and companionship for older adults who need assistance or supervision during the day.

Section 7. <u>Addition</u>. A new definition of "Transitional Housing" is added in Article VII: Definitions of the Mount Pleasant Zoning Ordinances to read as follows:

Transitional Housing: A non-profit facility that provides temporary sleeping accommodations and support services (on-site or off-site) emphasizing social rehabilitation for persons or families requiring interim housing arrangements and who would otherwise be without safe overnight shelter.

Section 8. <u>Publication and Effective Date</u>. The City Clerk shall cause to be published a notice of adoption of this ordinance within 10 days of the date of its adoption. This ordinance shall take effect 30 days after its adoption.

YEAS:	Commissioner(s)		
NAYS:	Commissioner(s)		
ABSTAIN:	Commissioner(s)		
ABSENT:	Commissioner(s)		
	<u>c</u>	ERTIFICATION	
		lla County, Michigan, I certify this is a true and comp ssion at a regular meeting held on, 2023	
		Amy Perschbacher, Mayor	
		Heather Bouck, City Clerk	
PC Hearing	2023		

TO: Planning Commission

FROM: Manuela Powidayko

Director of Planning and Community Development

DATE: September 7, 2023

SUBJECT: Institutional Uses

In the past months, the Planning and Community Development Department was approached by applicants interested in opening institutional uses that are currently not permitted in the City (or not fully reflected in the zoning ordinance):

- 1. The Isabella County Restoration House (ICRH) is looking to relocate their current day shelter facility from 120 S Pine to 555 N Main St, to also provide overnight accommodations. There are overnight shelters spread across church sites, which can accommodate approximately 25 individuals. However, the need is much greater, with more than 150 homeless living in the community¹. ICRH plans to offer another 50 beds.
- 2. A private provider wanting to open within University Park would offer substance use disorder recovery services. While detoxication facilities could be considered a medical use (medical office with outpatient treatment), these uses are not fully allowed within the university area by the City's current zoning ordinances.
- 3. Staff also flagged the need to allow adult day care centers considering the aging population (a 38.6% increase country-wide in just 10 years) and the ongoing need to assist disabled adults. The zoning ordinance currently only lists day care services for children.

At your June, July and August meetings (work sessions and introduction, respectively), the Planning Commission discussed, provided direction and reached general consensus to support the attached draft text amendment.

In summary, the proposed zoning text amendment for institutional uses would:

- Permit larger transitional housing such as homeless shelters (with more than 16 occupants) within CD-4 (General Urban) and CD-5 (Urban Center) Character Districts pursuant to a Special Use Permit;
- Permit smaller transitional housing such as domestic violence shelters (with 16 occupants or less²) by-right within CD-4 and CD-5, as well as in CD-3L (Sub-Urban Large Lot) and CD-3 (Sub-Urban) Character Districts;
- Allow medical uses within SD-RC (Research Center) Special Districts, which would enable detoxification facilities to
 come into those areas, while not hindering medical uses within SD-U (University) Special Districts, if service providers
 decide to purchase those properties from CMU³. This text change will also bring the existing medical use (McLaren
 Wellness Central) into compliance with zoning:
- Allow adult day care centers by-right within CD-3L, CD-3, CD-4 and CD-5 districts, similarly to child care centers.

Requested Action:

Recommend that the City Commission adopt Text Change 23-02.

Attachment

1. Draft ordinance

¹ The National Coalition to End Homelessness states that for central Michigan, bed capacity is at 102% and 800 individuals are unsheltered and sleeping on the streets. For families, the bed capacity is 113% with 100 families unsheltered. Educational statistics indicate that there are 150 homeless children in Isabella County, confirming that we more than likely have more than 157 homeless in our county that we were able to identify and count.

² The 2015 International Building Code commentary provides the direction to classify occupancies with less than 16 residents as residential as opposed to institutional due to the following reasons: (1) statistics show that 98% of single-family households in the U.S. have less than 16 occupants, (2) federal housing laws regarding nondiscrimination prohibit regulating what constitutes a family through blood or marriage, and (3) fire protection rules require more stringent sprinkler requirements for facilities that exceed 16 occupants.

³ Mt Pleasant Zoning Ordinances do not regulate properties within SD-U districts. However, if Central Michigan University conveys any portion of the land within University Park, that land becomes automatically subject to the provisions of SD-RC districts which do not currently allow for medical uses.

TO: Aaron Desentz

City Manager

FROM: Manuela Powidayko

Director of Planning and Community Development

DATE: September 25, 2023

SUBJECT: Text Change 23-03

As explained in the attached staff memorandum, the proposed ordinance would make the following changes to the manner in which attached garages are regulated:

- 1. Exempt two-story buildings from the requirement that attached garages shall not exceed 50% of the total width of the building;
- 2. Increase the maximum percentage from 50 to 60% for single-story homes.

The Planning Commission held a public hearing on the proposed ordinance on September 7, 2023. There were no public comments on the subject. Following the public hearing, the Planning Commission recommended that the City Commission adopt Text Change 23-02.

REQUESTED ACTION:

The City Commission receive the Planning Commission recommendation and set a public hearing on the proposed text change for October 23, 2023.

Attachments:

- 1. Draft ordinance
- 2. Staff memorandum from September 7, 2023

CITY COMMISSION CITY OF MOUNT PLEASANT

Isabella County, Michigan

Commissione ordinance:	er, s	supported by Com	missioner	, moved adop	otion of the following	
		ORDIN	IANCE NO			
LAR MOL	GE, CD-3 SUB-URBA	N, AND CD-4 GI	ENERAL URBAN	STANDARDS: CD-3L CHARACTER DISTRIC THE RATIO OF HOUS	TS OF THE	
It is Hereby 0	Ordained by the People of	of the City of Mount	Pleasant:			
				District Standards: CD- trage Location is amended		
turall exce	ly integrated into the ove	rall Building design rule shall not ap	and the garage is ply to two-story be	ft. into 1st Lot Layer whe less than 60% of the total uildings; No front-facing (idewalk	width of the Building,	
				District Standards: CD-3 tion is amended to read as		
turall exce	ly integrated into the ove	rall Building design rule shall not ap	and the garage is ply to two-story be	ft. into 1st Lot Layer whe less than 60% of the total uildings; No front-facing (idewalk	width of the Building,	
				trict Standards: CD-4 Ger		
turall exce	ly integrated into the ove	rall Building design rule shall not ap	and the garage is ply to two-story be	ft. into 1st Lot Layer whe less than 60% of the total uildings; No front-facing (idewalk	width of the Building,	
				to be published a noticake effect 30 days after its		
YEAS:	Commissioner(s)					
NAYS:	Commissioner(s)					
ABSTAIN:	Commissioner(s)					
ABSENT:	Commissioner(s)					
CERTIFICATION						
				, I certify this is a true and eeting held on		
			Amy Perschbache	er, Mayor		
			Heather Bouck, C	ity Clerk		

PC Hearing:	, 2023
Introduced:	, 2023
Adopted:	, 2023
Published:	, 2023
Effective:	, 2023

TO: Planning Commission FROM: Manuela Powidayko

Director of Planning and Community Development

DATE: September 7, 2023

SUBJECT: Ratio of house versus garage at frontage

In work session in April, staff provided a summary to the Planning Commission regarding the findings from the *Zoning for Economic Opportunity* outreach process, which included the suggestion that for residential development, the City should look at rules governing the ratio of house versus garage at frontage, to ensure that starter homes¹ can be more easily constructed. At your July and August meetings (work session and text amendment introduction, respectively), the Planning Commission discussed, provided direction and reached general consensus to support the attached draft text amendment.

Attached Garages are currently limited to be either located within the back of properties, or if located closed to the front façade, garages must occupy less than 50% of the total width of the building. This design control was put in place to ensure that the garage is not the prevalent design element of the façade of residential buildings. While such "ratio of house versus garage at frontage" can be an important rule to ensure quality designs in the city, it has been hindering the ability of property owners to design two-car garages in smaller lots².

The proposed text amendment would:

- Exempt two-story buildings from such 50% requirement since the second story provides visual relief from wide garages located at the ground-floor level;
- 2. Increase the maximum percentage from 50 to 60% for single-story homes, which would enable 50-foot lots³ accommodate two-car garages.

Requested Action:

Recommend that the City Commission adopt Text Change 23-03.

Attachment

1. Draft ordinance

Example: CD-3 (min lot width required: 50 ft) – Current 50% rule Minimum Lot Width needed to accommodate a 2-car garage: 56 feet*
*Total Side Yards: 12 ft + Total House Width: 44 ft (22 ft garage + 22 ft house)

Example: CD-3 (min lot width required: 50 ft) – Amended 60% rule Minimum Lot Width needed to accommodate a 2-car garage: 49 feet*
*Total Side Yards: 12 ft + Total House Width: 37 ft (22 ft garage +15ft house

¹ A relatively small, economical house or condominium that meets the requirements of first home buyers.

² Data analysis shows that almost one quarter of lots within CD-3 districts would not be able to accommodate two-car garages (13.5% citywide). This percentage is relevant considering that 92.5% of households in Michigan own two cars.

³ 50 feet is the minimum lot width required in CD-3 districts

Check Date	Vendor Name	Description	Amount
Bank COMM	COMMON CASH		
09/14/2023	DEPARTMENT OF THE NAVY	CONTAINMENT TEAM	\$2,100.00
09/22/2023	21ST CENTURY MEDIA - MICHIGAN	CONTRACT SVCS	1,051.97
09/22/2023	AARON DESENTZ	REIMBURSEMENT	124.99
09/22/2023	ABC FASTENER GROUP, INC	SUPPLIES	302.53
09/22/2023	AIRGAS USA, LLC	EQUIPMENT RENTAL	1,141.70
09/22/2023	ALAN CLARK	FARMER MKT	35.50
09/22/2023	ALAN CLARK	FARMER MKT	97.10
09/22/2023	ALEXANDER MATTHEWS	REIMBURSEMENT	100.00
09/22/2023	ALMA TIRE SERVICE INC	SUPPLIES/VEHICLE MAINT	2,739.26
09/22/2023	AMY RASCH	FARMER MKT	592.95
09/22/2023	ANDREW CURTISS	FARMER MKT	324.20
09/22/2023	ANGEL REINSHUTTLE	FARMER MKT	36.90
09/22/2023	ANGEL REINSHUTTLE	FARMER MKT	65.25
09/22/2023	ARIC STEWART	UMPIRE	36.00
09/22/2023	ARIC STEWART	UMPIRE	108.00
09/22/2023	AUDRA SZELAG	UMPIRE	45.00
09/22/2023	AUDRA SZELAG	UMPIRE	45.00
09/22/2023	BEN DVORAK	UMPIRE	15.00
09/22/2023	BEN DVORAK	UMPIRE	60.00
09/22/2023	BENDZINSKI & CO.	CONTRACT SVCS	15,450.00
09/22/2023	BILL KEHOE	FARMER MKT	192.75
09/22/2023	BILL KEHOE	FARMER MKT	166.00
09/22/2023	BLOCK ELECTRIC COMPANY	CONTRACT SVCS	1,869.80
09/22/2023	BOUND TREE MEDICAL, LLC	SUPPLIES	231.09
09/22/2023	BRAD DOEPKER	REIMBURSEMENT	56.00
09/22/2023	BRANDON CRAWFORD	REIMBURSEMENT	56.00
09/22/2023	BRUCE JORCK	FARMER MKT	1,804.50
09/22/2023	BRYCE HOLLINS	UMPIRE	36.00
09/22/2023	BRYCE HOLLINS	UMPIRE	90.00
09/22/2023	BS&A SOFTWARE	TRAINING	150.00
09/22/2023	BSN SPORTS LLC	SUPPLIES	19.00
09/22/2023	C & O SPORTSWEAR	SUPPLIES	323.60
09/22/2023	CARMEUSE AMERICAS	CHEMICALS	13,160.55
09/22/2023	CDW GOVERNMENT, INC	SUPPLIES	5,628.16
09/22/2023	CENTRAL CONCRETE INC	SUPPLIES	2,239.00
09/22/2023	CENTRAL MICH UNIV - MAILROOM	POSTAGE/HANDLING	2,475.70
09/22/2023	CENTRAL MICHIGAN UNIVERSITY	CONTRACT SVCS	183.00
09/22/2023	CENTRAL MICHIGAN UNIVERSITY	CONTRACT SVCS	735.00
09/22/2023	CENTRAL MICHIGAN UNIVERSITY	CONTRACT SVCS	183.00
09/22/2023	CENTRAL MICHIGAN UNIVERSITY	CONTRACT SVCS	897.88
09/22/2023	CHRIS BECK	FARMER MKT	667.40
09/22/2023	CHRIS LEONARD	REIMBURSEMENT	324.07
09/22/2023	CHRISTINE WITMER	REIMBURSEMENT	50.00
09/22/2023	CHRISTOPHER CARABELLI	REIMBURSEMENT	421.82
09/22/2023	CHRISTOPHER SWIER	FARMER MKT	217.95
09/22/2023	CINTAS CORP	SUPPLIES/CONTRACT SVCS	75.32
09/22/2023	CLAYTON MOLYNEUX	UMPIRE	45.00
09/22/2023	CLAYTON MOLYNEUX	UMPIRE	75.00

Check Date	Vendor Name	Description	Amount
Bank COMM	COMMON CASH		
09/22/2023	COMMUNITY CONSTRUCT/SKILLS FOR	CONTRACT SVCS	13,115.00
09/22/2023	CONSUMERS ENERGY	UTILITIES	55,852.25
09/22/2023	COREY DION WALTHER	FARMER MKT	141.50
09/22/2023	COREY DION WALTHER	FARMER MKT	153.30
09/22/2023	COYNE OIL CORPORATION	FUEL	9,509.82
09/22/2023	CULLIGAN	CONTRACT SVCS	51.00
09/22/2023	DAN SODINI	FARMER MKT	11.40
09/22/2023	DAVID GROTHAUSE	FARMER MKT	58.60
09/22/2023	DAVID GROTHAUSE	FARMER MKT	46.40
09/22/2023	DAVID MCCLAIN	UMPIRE	60.00
09/22/2023	DAVID W WHITEHEAD	FARMER MKT	100.95
09/22/2023	DAVID W WHITEHEAD	FARMER MKT	57.95
09/22/2023	DORNBOS SIGN & SAFETY, INC.	SUPPLIES	81.97
09/22/2023	DTE ENERGY	UTILITIES	4,733.66
09/22/2023	ERNEST WOLF	FARMER MKT	209.15
09/22/2023	ERNEST WOLF	FARMER MKT	297.55
09/22/2023	FIDELITY SECURITY LIFE INSURANCE CO	OPTICAL INSURANCE	1,204.14
09/22/2023	FISHBECK - ENGINEERS/ARCHITECTS/	CONTRACT SVCS	6,191.00
09/22/2023	FLEX ADMINISTRATORS	FSA ADMINISTRATIVE FEE	243.60
09/22/2023	FRONT LINE SERVICES, INC	CONTRACT SVCS	2,139.36
09/22/2023	GALGOCI OIL COMPANY	FUEL	415.69
09/22/2023	GALLOUP/FORBERG SMITH/MERLO	SUPPLIES	269.90
09/22/2023	GARY BRANDT	FARMER MKT	565.20
09/22/2023	GEMINI CAPITAL	UB REFUND	94.92
09/22/2023	GRAINGER	SUPPLIES	123.06
09/22/2023	GRANGER	CONTRACT SVCS	76.68
09/22/2023	GREEN SCENE LANDSCAPING, INC.	CONTRACT SVCS	3,792.40
09/22/2023	GT RUBBER SUPPLY	SUPPLIES	3,106.22
09/22/2023	HACH COMPANY	CONTRACT SVCS	867.00
09/22/2023	HANK MCDONALD	UMPIRE	54.00
09/22/2023	HCC LIFE INS. CO	ADMIN - STOP LOSS INS	21,732.28
09/22/2023	HIRERIGHT	CONTRACT SVCS	874.99
09/22/2023	HOFFMAN CONSTRUCTION	CONTRACT SVCS	16,900.00
09/22/2023	INFOSEND, INC	CONTRACT SVCS	3,154.03
09/22/2023	ISABELLA BANK	CAPITAL IMPROVEMENT BONDS	442,725.00
09/22/2023	ISABELLA CAT CLINIC	CONTRACT SVCS	2,960.00
09/22/2023	ISABELLA VALENZUELA-WATSON	UMPIRE	108.00
09/22/2023	JACK DOHENY COMPANIES, INC	SUPPLIES	1,219.35
09/22/2023	JANENE CHISEL	REIMBURSEMENT	20.50
09/22/2023	JENNIFER MAYER	FARMER MKT	59.70
09/22/2023	JENNIFER MAYER	FARMER MKT	41.85
09/22/2023	JESSA SKONIECZNY	UMPIRE	45.00
09/22/2023	JESSA SKONIECZNY	UMPIRE	75.00
09/22/2023	JOHN JOHNSON	FARMER MKT	102.60
09/22/2023	JOHN JOHNSON	FARMER MKT	169.00
09/22/2023	JOSEPH BRYANT	REIMBURSEMENT	100.00
09/22/2023	JOSEPH M DAY COMPANY INC	CONTRACT SVCS	1,021.00
09/22/2023	KAREN FENTON	FARMER MKT	143.15

Check Date	Vendor Name	Description	Amount
Bank COMM	COMMON CASH		
09/22/2023	KAREN FENTON	FARMER MKT	16.15
09/22/2023	KATHERINE BUGBEE	FARMER MKT	19.95
09/22/2023	KNOWBE4, INC.	CONTRACT SVCS	3,689.40
09/22/2023	KRAPOHL FORD LINCOLN MERC	SUPPLIES/VEHICLE MAINT	538.61
09/22/2023	LAURA DELAMATER	REIMBURSEMENT	11.07
09/22/2023	LAURA FOX	REIMBURSEMENT	49.38
09/22/2023	LISE WHITE	REIMBURSEMENT	12.70
09/22/2023	LITHOPREP	SUPPLIES	940.00
09/22/2023	LOUISE WYMER	FARMER MKT	263.60
09/22/2023	LOUISE WYMER	FARMER MKT	327.75
09/22/2023	LUCY KEYES	UMPIRE	45.00
09/22/2023	LUCY KEYES	UMPIRE	75.00
09/22/2023	MARK KARIMI	UMPIRE	30.00
09/22/2023	MARK KARIMI	UMPIRE	45.00
09/22/2023	MATTHEW BOOTH	UMPIRE	36.00
09/22/2023	MATTHEW BOOTH	UMPIRE	108.00
09/22/2023	MATTHEW BOOTH	UMPIRE	30.00
09/22/2023	MATTHEW STOREY	REFUND	90.00
09/22/2023	MAYA GONZALES	UMPIRE	45.00
09/22/2023	MAYA GONZALES	UMPIRE	120.00
09/22/2023	MCGUIRK SAND & GRAVEL INC	CONTRACT SVCS	15,963.00
09/22/2023	MCLAREN CORPORATE SERVICES	CONTRACT SVCS	927.00
09/22/2023	MEDLER ELECTRIC COMPANY	SUPPLIES	5.61
09/22/2023	MELINDA MORRISON	CONTRACT SVCS	750.00
09/22/2023	MICHIGAN PIPE & VALVE	SUPPLIES	16,816.00
09/22/2023	MID-MICHIGAN INDUSTRIES	CONTRACT SVCS	8,758.00
09/22/2023	MILAN SUPPLY COMPANY	SUPPLIES	667.80
09/22/2023	MIRANDA LEY	FARMER MKT	56.55
09/22/2023	MPPS FOOD & NUTRITION SERV	SUPPLIES	6,130.10
09/22/2023	MT PLEASANT KIWANIS CLUB	DUES	150.00
09/22/2023	MT PLEASANT OPTIMIST CLUB	CONTRACT SVCS	98.33
09/22/2023	MT. PLEASANT PUBLIC SCHOOLS	CONTRACT SVCS	7,924.51
09/22/2023	NCL OF WISCONSIN	SUPPLIES	2,618.58
09/22/2023	NYE UNIFORM COMPANY	UNIFORMS	484.00
09/22/2023	ODP BUSINESS SOLUTIONS, LLC	SUPPLIES	214.04
09/22/2023	OHM ADVISORS	CONTRACT SVCS	1,628.00
09/22/2023	ON DUTY GEAR, LLC	UNIFORMS	118.50
09/22/2023	O'NEIL & DUSO PLLC	ATTORNEY SVCS	7,785.98
09/22/2023	PAPAS PUMPKIN PATCH	FARMER MKT	1,872.30
09/22/2023	PAPAS PUMPKIN PATCH	FARMER MKT	731.20
09/22/2023	PHILLIP BISCORNER	REIMBURSEMENT	150.00
09/22/2023	PIYUSH SARAIYA	UMPIRE	45.00
09/22/2023	PIYUSH SARAIYA	UMPIRE	60.00
09/22/2023	PLEASANT GRAPHICS, INC	SUPPLIES	50.00
09/22/2023	PRO COMM, INC	COMMUNICATIONS	1,652.50
09/22/2023	PVS TECHNOLOGIES, INC	CHEMICALS	9,682.32
09/22/2023	REBECCA PARKER	FARMER MKT	153.20
09/22/2023	REBECCA PARKER	FARMER MKT	191.80

Check Date	Vendor Name	Description	Amount
Bank COMM	COMMON CASH		
09/22/2023	RENEE EARLE	FARMER MKT	84.10
09/22/2023	RENEE EARLE	FARMER MKT	98.65
09/22/2023	ROMANOW BUILDING SERVICES	CONTRACT SVCS	6,327.69
09/22/2023	ROSEMARY CARSON	FARMER MKT	27.55
09/22/2023	RYLEIGH FOSTER	UMPIRE	45.00
09/22/2023	SADIE WHEATON	SUPPLIES	335.00
09/22/2023	SAM MEASE	UMPIRE	60.00
09/22/2023	SARAH GOWARD	UMPIRE	45.00
09/22/2023	SARAH GOWARD	UMPIRE	30.00
09/22/2023	STATE OF MICHIGAN	CONTRACT SVCS	7,141.63
09/22/2023	STATE OF MICHIGAN	CONTRACT SVCS	310.00
09/22/2023	STERICYCLE, INC.	CONTRACT SVCS	964.64
09/22/2023	STEVIE SWAREY	FARMER MKT	55.35
09/22/2023	STEVIE SWAREY	FARMER MKT	37.25
09/22/2023	SUNRISE ASSESSING SERVICES, LLC	CONTRACT SVCS	7,955.00
09/22/2023	SYNERGY EQUIPMENT	CONTRACT SVCS	1,300.00
09/22/2023	SYNERGY EQUIPMENT	CONTRACT SVCS	4,308.23
09/22/2023	T.H. EIFERT, LLC	CONTRACT SVCS	1,487.77
09/22/2023	TINA CAPUSON	FARMER MKT	31.05
09/22/2023	TINA CAPUSON	FARMER MKT	66.20
09/22/2023	TRACE ANALYTICAL LABORATORIES, INC.	CONTRACT SVCS	386.00
09/22/2023	UNIFIRST CORPORATION	CONTRACT SVCS	136.18
09/22/2023	USABLUEBOOK	SUPPLIES	1,814.44
09/22/2023	VALET AUTO CARE, INC	SUPPLIES/VEHICLE MAINT	1,475.00
09/22/2023	VANESSA LABELLE	UMPIRE	45.00
09/22/2023	VANESSA LABELLE	UMPIRE	45.00
09/22/2023	WOMEN'S AID SERVICES	CONTRACT SVCS	6,674.40
09/22/2023	YEO & YEO TECHNOLOGY	CONTRACT SVCS	28,524.00
СОММ ТОТА	LS:		
Total of 173 (Checks:		\$813,907.12
Less 0 Void C	hecks:		0.00
Total of 173 [\$813,907.12		

SEMI-ANNUAL TWO PERCENT ALLOCATION CITY OF MT. PLEASANT REQUESTS FALL 2023

DEPARTMENT/PROJECT NAME	<u>AMOUNT</u>	<u>PRIORITY</u>
Airport		
Runway/Taxiway Rehab	\$ 50,000	С
Building		
Energy Efficiency and Building Sustainability	\$ 60,000	Н
Downtown Development		
Town Center Civic Space	\$ 189,000	Н
Engineering		
1303 N Franklin Former Landfill Remediation & Monitoring	\$ 50,000	L
City Hall Retaining Wall-Broadway Street Sidewalk Replacement	\$ 70,000	М
Sidewalk Replacement	\$ 150,000	М
Parks		
Mid Michigan/GKB Riverwalk Pathway Northern Connection	\$ 200,000	Н
Police		
Aerial Fire Apparatus	\$ 250,000	С
Mt. Pleasant Police Vehicle and Body Camera Project	\$ 406,620	С
Public Works		
Pickard and Bradley Traffic Signal	\$ 84,100	Н
Streets		
Asphalt Overlays and Street Resurfacing	\$ 976,000	М
Broadway Street Storm Sewer Upgrade	\$ 215,000	М
Close Crawford Road Sidewalk Gaps	\$ 23,000	М
Kinney Street Mill and Overlay	\$ 290,000	M
Pickard Storm Sewer	\$ 247,780	Н
Water		
Automatic Water Meters	\$ 59,940	М
Lime Disposal	\$ 215,000	Н
Water Resource Recovery		
Food Waste/Organics Receiving	\$ 300,000	М
Total Requested	\$ 3,836,440	

Priority Definitions

Critical:

- Project must be done to address failure of infrastructure OR
- Funding is needed to support essential program or it will not be able to continue

High:

• Important project or program to meet <u>current</u> service or program needs

Medium:

• Important project or program to meet <u>future or new</u> service or program needs

Low:

• New project or program that would be nice to have

Overview

Project Name

Runway/Taxiway Rehab

Total Requested

\$50,000.00

(amount based on the Itemized Budget total)

Applicant Project Priority

Critical

Reocurring Need?

This Request is Reocurring

Applicant Information

Applicant Name

bbrickner@mt-pleasant.org

Applicant Email

Bill Brickner

Organization

Mt. Pleasant Airport

Address

5453 E. Airport Rd Mt. Pleasant , 48858

Phone Number

9897722965

Organization Information

Primary Organization

City of Mt. Pleasant

Authorizers

adesentz@mt-pleasant.org

Status

Review

Address

320 W. Broadway

Mount Pleasant, Michigan 48858

Phone

(989) 779-5300

Fax

Project Partners

Partnered With

Union Township

Authorizers

Mark Stuhldreher <u>mstuhldreher@uniontownshipmi.com</u>

Status

Review

Address

2010 S Lincoln Road

Mount Pleasant, Michigan 48858

Phone

989-772-4600

Fax

989-773-1988

Partnered With

Isabella County

Authorizers

nfrost@isabellacounty.org

Dan Gahagan dgahagan@sagchip.org

Erik Rodriguez <u>erodriguez@sagchip.org</u>

Status

Review

Address

200 N. Main Street Mount Pleasant, Michigan 48858

Phone

989 772-0911

Fax

Categories

- Economic development
- Infrastructure
- Safety/Security
- Transportation

Project Description

This funding is to match the Federal and State funding provided to rehabilitate Taxiway "A" and Runway 9/27. In 2022, consultants began the design work for the Taxiway "A" rehabilitation. This project will include lighting, signage, runway re-designation, and repaving of Taxiway "A". It is anticipated the construction work will commence during the 2024 construction season. In 2024, it is anticipated the design work for Runway 9/27 would begin with construction taking place in 2025. Projected costs for these projects are \$7,036,000 with Federal grants covering \$6,332,400, and State grants covering \$351,800, and required local share of \$351,800. The lighting and pavement in these areas are near the end of their useful life, and will be in need of rehabilitation in order for the airport to remain an economic driver for the community.

Benefit Description

The airport is a driver for economic development and business growth. The Mt. Pleasant Airport is a major gateway to the Tribal community's casino and resort operations. The funding would help to ensure safe airport operations by having safe and reliable infrastructure. Entertainers and patrons alike, appreciate the convenience and service they experience at the airport when coming to visit or preform at the resort. Runways and Taxiways are the most important features for safe travel to and from the airport.

Funding Requirements

The funding request is for \$50,000 for each of the next two years, to accumulate funds, which will assist in covering the match requirements for Federal and State grants for these required projects. This request is for the third contribution towards the required match.

Description of Reocurring Need

Project Timeline

Taxiway "A" anticipated schedule 2022 Design 2024 Construction

Runway 9/27 anticipated schedule

2024 Design2025 Construction

Budget Items

Name	Cost	Quantity	Total	Category
Runway/Taxiway Rehab	\$50,000.00	1	\$50,000.00	Transportation
AmountRequested	\$50,000.00			

Matching Funds

Name	Cost	Quantity	Total
Runway/Taxiway Rehab Federal Grant	\$6,332,400.00	1	\$6,332,400.00
Runway/Taxiway Rehab State Grant	\$351,800.00	1	\$351,800.00
Runway/Taxiway Rehab Local Share	\$351,800.00	1	\$351,800.00
AmountMatched	\$7,036,000.00		

Budget Summary Amount Requested

\$50,000.00

Amount Matched

\$7,036,000.00

Total Amount

\$7,086,000.00

Uploaded Files

Name	
No files have been uploaded.	

There are no comments to display.

Overview

Project Name

Energy Efficiency and Building Sustainability

Total Requested

\$60,000.00

(amount based on the Itemized Budget total)

Applicant Project Priority

High

Reocurring Need?

Not Reocurring

Applicant Information

Applicant Name

bkench@mt-pleasant.org

Applicant Email

Brian Kench

Organization

City of Mt. Pleasant

Address

320 W Broadway Street

Mount Pleasant, 48858

Phone Number

9893303866

Organization Information

Primary Organization

City of Mt. Pleasant

Authorizers

adesentz@mt-pleasant.org

Status

Review

Address

320 W. Broadway

Mount Pleasant, Michigan 48858

Phone

(989) 779-5300

Fax

Categories

- Education
- Environmental

Project Description

• Building Sustainability

Project Description

Central Michigan University sponsored an internship with the city to assist in creating a city-wide energy efficiency and building sustainability program in the summer of 2023. Much of the initial work included reviewing available rebate/grant opportunities and placing them into a condensed and easily understandable format for residents. Some of that work is already available on the City's website.

The next phase of the project will include securing funding to provide an extensive energy audit, for residents, that will provide a report

that will target low cost-no cost items to reduce energy, along with recommendation on upgrading obsolete heating and cooling equipment, water heaters, water saving devices, along with improving building envelope to address comfort and performance through updated windows, insulation, and sealants.

The program will allow us to benchmark the city as a whole and look for ways to challenge the community in making updates to their property that are more sustainable and reduce the use of fossil fuels. The program will also explore the use of alternative energy such as wind and solar.

Staff will be looking to do this work as part of a paid internship with CMU, along with contracting the services of an approved energy auditor. The estimated cost for the audit is planned at \$500 per site. The review will take into consideration the following: Energy Audit (Example)

- Explore options for initiating the energy audit, i.e., consultant, other resources that may be available, or looking at energy raters through the State of Michigan/Utility Companies.
- Program to evaluate the home for energy consumption in comparison with similar buildings/uses.
- Conduct a "blower door" test as part of the energy audit to determine building tightness.
- Use infrared scanning to identify air leakage through windows, doors, and wall areas.

Low Cost / No Cost items (Inventory components of building envelope)

- Sealing penetrations of the exterior envelope
- Weather sealing (doors and windows)
- Window condition and type
- Door condition and type
- Insulation types and levels
- Scheduling equipment
- · Low flow water reducing devices.
- Smart devices to turn out lights and adjust systems.
- Planned landscaping for shading.
- Window treatments

Low Cost/Short Term return on investment (1-2 years)

- Heating Equipment -Fuel, type, size (Was the equipment sized properly for the home)
- Water Heating-Fuel, type, size (Age, is the tank insulated, is there a recirculating pump for on-demand systems, etc.)
- Windows Low E or better
- Increased insulation in foundation, walls, and attics. (Type and R-value)

Alternative Energy

- Photovoltaic, PV's (Electricity from the Sun)
- Wind Generation

Funding Requirements – Request for \$60,000

Partnerships with area agencies will be a focus along with pursuit and leveraging of available grants to offset cost for upgrade to the building.

This project is proposed to be complete in 2024 -2025

Benefit Description

The community will benefit through reducing our use of fossil fuels. This program will provide an educational component with CMU and provide information to the public on ways in which to reduce our use of fossil fuels through energy efficiency and building sustainability.

Funding Requirements

We are looking at a start up of \$60,000.

\$15,000 for paid internship

\$45,000 allocated to cost associated with energy audits of homes.

Project Timeline

Staff will continue our energy efficiency and building sustainability work in early 2024.

November - Dec Work with CMU to bring our second intern to head up the program.

Jan 2023 - Partner with our utility providers on rebates incentives for energy efficiency upgrades for homeowners.

Jan-March 2024 Work with local material suppliers and HVAC (Heating, Ventilating and Air-Conditioning) contractors to seek potential incentives to buy/contract local as part of our program.

Jan-Feb - Solicit energy consultant to assist with energy audits and reporting.

Jan-Feb Complete program requirements and application

March 2023 Promote program through social media, radio, website and mailings.

April - Oct - Field Work

Oct - Dec Evaluate program and review our findings

Budget Items

Name	Cost	Quantity	Total	Category
Energy Efficiency and Building Sustainability	\$60,000.00	1	\$60,000.00	Environmental
AmountRequested	\$60,000.00			

Matching Funds

Name	Cost	Quantity	Total		
No Matching Funds items have been added.					
AmountMatched	\$0.00				

Budget Summary Amount Requested

\$60,000.00

Amount Matched

\$0.00

Total Amount

\$60,000.00

Uploaded Files

Ν	aı	m	e
	aı		ᢏ

No files have been uploaded.

There are no comments to display.

Overview

Project Name

Town Center Civic Space

Total Requested

\$189,000.00

(amount based on the Itemized Budget total)

Applicant Project Priority

High

Reocurring Need?

Not Reocurring

Applicant Information

Applicant Name

msponseller@mt-pleasant.org

Applicant Email

Michelle Sponseller

Organization

City of Mt. Pleasant

Address

320 West Broadway

Mt. Pleasant, 48858

Phone Number

9897795348

Organization Information

Primary Organization

City of Mt. Pleasant

Authorizers

adesentz@mt-pleasant.org

Status

Review

Address

320 W. Broadway

Mount Pleasant, Michigan 48858

Phone

(989) 779-5300

Fax

Categories

- Economic development
- Park Improvements

Project Description

The Town Center Civic Space project is to create a dynamic community space that is accessible and inclusive to all members of the community. The proposed design will increase the green space by 4 ½ times, incorporate universal accessibility design principles, offer public restrooms, expand sidewalks, install seating and bike racks, upgrade electrical for special events, and install electrical car charging stations.

The total project estimated cost is \$2,278,462 and is intended to be a long-term investment in the city's economic development. The proposed Town Center Civic Space will be an attractive destination for tourists and will help to create a vibrant business district in the heart of Mt. Pleasant. More importantly, the project will be a community gathering space, providing year-round entertainment for all ages and abilities, and an outdoor venue for art, music, and other events.

Public Space Features:

- Multi-Purpose Community Hub: A versatile space for year-round public gatherings, events, and activities, including farmers' markets, music concerts, and festivals.
- Expansive Green Space and Enhanced Urban Greenery: Significant increase in green space, with added trees and plantings to improve air quality, provide shade, and support biodiversity.
- Universal Accessibility Design: Curbless transitions between parking and multi-functional areas, wide accessible sidewalks, and seating areas to ensure easy navigation and maximum comfort for all community members.
- Accessible Public Restrooms: Construction of public restrooms adhering to accessibility standards to ensure comfort and convenience for all community members during events and daily activities.
- Comprehensive Site Amenities: Installation of comfortable benches, strategically placed trash cans, bike racks, universally accessible pathways, and seating areas to encourage a clean, welcoming environment and promote alternative transportation options.
- Upgraded Electrical Infrastructure: Modernized electrical systems to support a wide range of events and activities, enhancing the functionality and adaptability of the multi-functional space.
- Traffic Calming Measures: Removal of a bypass around the historic downtown area to encourage slower vehicle speeds, increased pedestrian safety, and a more vibrant, walkable community.
- Enhanced Pedestrian Lighting: Additional pedestrian lighting throughout the area to promote comfort, safety, and a sense of security during nighttime hours and low-light conditions.
- Green Infrastructure and Sustainability: Commitment to sustainable practices, including the installation of electric vehicle charging stations to promote clean transportation options and reduce the community's carbon footprint.

Benefit Description

The Town Center Civic Space project will greatly benefit the community by creating a modern, accessible, and multifunctional space that caters to the diverse needs of Mt. Pleasant's residents and visitors, 63% of whom are low to moderate-income individuals. The universal accessible design will provide a year-round event and gathering area for the community, becoming an attractive venue for events such as concerts, the weekly farmers' market, and various other community activities. This revitalized space will not only enhance the quality of life for residents but also serve as a catalyst for economic development and increased tourism in the downtown area.

Funding Requirements

The estimated cost for the Town Center Civic Space project is \$2,278,462. The budget breakdown is as follows:

- Site Amenities: \$189,000 (universally accessible walkways, trees, benches, bike racks, electrical upgrades and EV car charging stations)
- Universally accessible restrooms: \$553,625
- Additional green space: \$353,060
- Parking lot reconstruction and additional on-street parking spaces: \$1,182,777

Funding Requirements Met: \$2,089,462

\$1,000,000 = Revitalization and Placemaking Grant from Michigan Economic Development Corporation

\$1,089,462 = City of Mt. Pleasant

Project Timeline

The proposed timeline for the Town Center Civic Space project is as follows:

- May August 2023: Project planning and design phase, including community engagement and public consultation phase
- November 2023: Design finalized
- January 2024: Project bid
- May 2024: Construction begins
- October 2024: Project completion

Budget Items

Name	Cost	Quantity	Total	Category
Site Amenities	\$189,000.00	1	\$189,000.00	Park Improvements
AmountRequested	\$189,000.00			

Matching Funds

Name	Cost	Quantity	Total
Universally Accessible Bathrooms	\$553,625.00	1	\$553,625.00
Additional Green Space	\$353,060.00	1	\$353,060.00
Parking Lot Reconstruction and On-street Parking	\$1,182,777.00	1	\$1,182,777.00
AmountMatched	\$2,089,462.00		

Budget Summary Amount Requested

\$189,000.00

Amount Matched

\$2,089,462.00

Total Amount

\$2,278,462.00

Uploaded Files

Name	
No files have been uploaded.	

There are no comments to display.

Overview

Project Name

1303 N Franklin Former Landfill Remediation

Total Requested

\$50,000.00

(amount based on the Itemized Budget total)

Applicant Project Priority

Medium

Reocurring Need?

Not Reocurring

Applicant Information

Applicant Name

jmoore@mt-pleasant.org

Applicant Email

Jason Moore

Organization

City of MtPleasant

Address

320 W Broadway St MOUNT PLEASANT , 48858

Phone Number

9897795405

Organization Information

Primary Organization

City of Mt. Pleasant

Authorizers

adesentz@mt-pleasant.org

Status

Review

Address

320 W. Broadway

Mount Pleasant, Michigan 48858

Phone

(989) 779-5300

Fax

Categories

Environmental

Project Description

This request is for funding to continue work at 1303 N Franklin Street (a City-owned property). We would continue work according to the advisement of our environmental consultant and the Michigan Department of Environment Great Lakes and Energy (EGLE). We are expecting to be able to begin remediation activities once the site assessment has been completed. This funding would be used for the eventual remediation project.

Community landfills were common throughout the state and country for several decades for the disposal of local trash. This former landfill was operated until 1975 for placement of general refuse from residents and business owners throughout the community. In the early 1980s, the landfill was closed and capped with clean fill material, as appropriate with the regulatory requirements applicable at the time. The City is working in conjunction with the State and Federal regulatory agencies to evaluate the environmental condition of the former landfill.

Previous funding awarded during the 2020-2022 two-percent processes have allowed for further characterization of the site and refinement of the Conceptual Site Model (CSM). Deep wells were installed in the spring of 2022 and have been sampled. The environmental consultant compiled data and put together a report of work done. It was determined that another deep well outside the landfill area should be installed and water tested to verify that the clay layer found during prior work is sufficient to eliminate the drinking water pathway. This work has been completed.

Benefit Description

The retired municipal landfill at 1303 N Franklin was utilized by Mt. Pleasant and the surrounding area from some time in the 1950s to 1975 when it was closed. Shortly after closure, the area had a clay cap placed over it to limit the rainwater entering the landfill area.

Funding for this project will allow for future work at the site in accordance with the advisement of our environmental consultant and the Michigan Department of Environment Great Lakes and Energy (EGLE).

Funding Requirements

Future funding requirements are unknown and will depend on the type of remediation that may be required.

Project Timeline

Fall of 2023 to Summer of 2024

Budget Items

Name	Cost	Quantity	Total	Category
Remediation	\$50,000.00	1	\$50,000.00	Environmental
AmountRequested	\$50,000.00			

Matching Funds

Name	Cost	Quantity	Total
Remediation	\$50,000.00	1	\$50,000.00
AmountMatched	\$50,000.00		

Budget Summary

Amount Requested

\$50,000.00

Amount Matched

\$50,000.00

Total Amount

\$100,000.00

Uploaded Files

Name

M3460004Report 2023-09-06.pdf

M3460003ReportRed 2023-09-06.pdf

There are no comments to display.

June 22, 2023

Mr. Jason Moore DPW Director City of Mount Pleasant, Michigan 320 West Broadway Mount Pleasant, Michigan 48858

RE: Deep Groundwater Monitoring Well

Former Mount Pleasant Landfill Mount Pleasant, Michigan

Dear Mr. Moore:

The Mannik & Smith Group, Inc. (MSG) was retained by the City of Mount Pleasant, Michigan to provide professional environmental consulting services for investigation of a former landfill area at City-owned property located north of the intersection of West Pickard and North Franklin Streets in Mount Pleasant. The subject site is located at 1303 North Franklin Street in Mount Pleasant, Michigan.

MSG has been assisting the City with regulatory compliance issues associated with the former landfill area since November 2020. This letter report documents the installation and sampling of a deep groundwater monitoring well at the former landfill area, as authorized by the City on February 28, 2023 under an Agreement for Services between the City of Mount Pleasant and MSG based on MSG's February 1, 2023 Proposal No. M3460003.CO1.

DEEP MONITORING WELL INSTALLATION

A deep exploratory boring designated MW-300 was drilled and sampled at the approximate location shown on *Figure 1*, *Site Map*, in *Attachment A*, *Figure 1*. The boring was drilled and sampled on April 4, 2023 by Cascade Environmental (Cascade) of Flint, Michigan using a rubber track mounted Boart Longyear 150 Minisonic drill rig and rotosonic drilling methodology. A subsurface utility staking request was made through the MISS DIG utility locating system prior to commencement of drilling and sampling. The boring log for MW-300 is included in *Attachment B*, *Boring and Monitoring Well Log*. Photographs of the field activities are included in *Attachment C*, *Photo Log*.

The rotosonic drilling method uses high-frequency resonant energy to advance a core barrel into the subsurface formations. The resonant energy is transferred down the drill string to the drill bit face at various sonic frequencies. The subsurface materials are continuously cored and recovered using a 4-inch diameter steel coring barrel. The 4-inch diameter coring barrel is overridden by a six-inch diameter steel barrel that cases the borehole and prevents collapse. Water is used when necessary to reduce drilling friction and heat buildup. Potable water from the City of Mount Pleasant's municipal water system was used by Cascade.

Four-inch diameter soil cores were collected on a continuous basis from the ground surface to the boring terminus depth at 85 feet below the ground surface (bgs). Five-foot long coring runs were used in the uppermost 10 feet of drilling, followed by 10-foot long runs. The recovered soils at each boring location were examined and logged in the

field by an experienced MSG Certified Professional Geologist (CPG).

A groundwater monitoring well was installed in boring MW-300 on April 5, 2023 following completion of drilling and soil sampling. The monitoring well construction details are included on the boring/monitoring well log in Attachment B. The well assembly for monitoring well MW-300 consists of a 2-inch diameter 10-slot¹ Schedule 40 PVC well screen flush threaded to 2-inch diameter Schedule 40 PVC riser pipe. The 10 foot-long well screen for MW-300 was set in the 75-85 feet bgs depth interval.

The location of monitoring well MW-300 was surveyed by MSG field personnel using a hand-held global positioning system (GPS) instrument with sub-centimeter accuracy capability. The location coordinates are included on the boring and well construction log in Attachment B. The ground surface and top of casing elevation for MW-300 were surveyed to the nearest 0.1 foot and 0.01 foot, respectively, as referenced to an onsite vertical datum established by a professional survey crew from MSG's Canton, Michigan office.

As shown on the boring log in Attachment B, no granular soil layers were observed below a depth of 25 feet bgs at the location of MW-300. A boulder, or possibly a portion of a boulder, was encountered in the depth interval of approximately 81-83 feet bgs, within the screened interval of monitoring well MW-300 (see page 8 of the photo log in Attachment B). It is possible that there is a layer of cobbles and boulders within the glacial till at that depth that extends laterally outward beyond the 4-inch radius of the MW-300 soil core.

GROUNDWATER SAMPLING AND ANALYSIS

Monitoring well MW-300 was initially purged by MSG personnel on April 20, 2023 using a bladder pump and a new, disposable high density polyethylene (HDPE) bailer. Following removal of approximately 32 gallons of purge water from MW-300, the purge water was cloudy and silty and was not suitable for representative groundwater sampling.

MSG personnel returned to the site on May 24, 2023 and removed an additional 35 gallons of water from monitoring well MW-300 using a submersible pump² and new HDPE tubing. Upon completion of purging on May 24, 2023, the purge water from MW-300 appeared relatively clear and free of visible silt or sediment. A groundwater sample was collected using the purge pump and HDPE tubing. A new, disposable HDPE bailer was also used for sampling for per and polyfluoroalkyl substances (PFAS) analysis. Both filtered and unfiltered groundwater samples were collected for metals analysis. The filtered sample (designated as sample MW-300F) was collected using a disposable 0.45-micron filter specifically designed for environmental groundwater sampling.

Two groundwater samples were collected from MW-300 for PFAS analysis. Groundwater sample MW-300P was collected using the purge pump and HDPE tubing. Groundwater sample MW-300 was collected using a new, disposable HDPE bailer. A field blank sample was also collected for PFAS analysis. The field sampling forms are included in *Attachment D, Field Sampling Forms*.

The groundwater samples from MW-300 on May 24, 2023, the field blank sample, and a laboratory-supplied trip blank sample were submitted under standard chain of custody protocol to the ALS Environmental laboratory in Holland, Michigan (ALS) for analysis. The groundwater samples were analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), total and dissolved phase metals (10 Michigan metals plus aluminum, antimony, beryllium, boron, nickel, and thallium), ammonia, and PFAS

² Geo-Squirt purge pump manufactured by Geotech Environmental Equipment, Inc. (Denver, Colorado)

¹ A 10-slot well screen has 0.010-inch openings

compounds. The field blank was analyzed for PFAS compounds. The trip blank sample was analyzed for VOCs. The laboratory analytical data report is included in *Attachment E, Laboratory Analytical Report*.

GROUNDWATER SAMPLE ANALYTICAL RESULTS

As shown on the laboratory analytical data report in Attachment E, PCBs, VOCs, and SVOCs were not detected in the groundwater samples collected from monitoring well MW-300. The reported ammonia concentration of 1.2 milligrams/liter (mg/l) is below the Michigan Public Act 451 Part 201 Generic Residential Cleanup Criterion (GRCC) of 10 mg/l for drinking water. The reported aluminum concentration of 0.42 mg/l for the unfiltered groundwater sample is above the aesthetic GRCC of 0.050 mg/l for aluminum. However, aluminum was not reported at or above the laboratory reporting limit of 0.010 mg/l for the filtered groundwater sample (sample MW-300F).

MSG appreciates the opportunity to be of service to the City of Mount Pleasant. Please do not hesitate to contact the undersigned if you have any questions or require clarifications pertaining to the specifics of this report.

Sincerely,

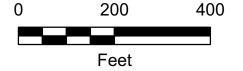
The Mannik & Smith Group, Inc.

David Adler

David J. Adler, CPG

Project Manager

Cc: Larry Engelhart, EGLE RRD


Bay City District Office

ATTACHMENT A FIGURE 1

<u>Legend</u>

- Soil Boring Location MSG (May 2021)
- Soil Boring Location MSG (April 2022)
- PVC Monitoring Well MSG (April 2023)
- PVC Monitoring Well -- MSG (April 2022
- PVC Monitoring Well MSG (Nov. 2020)
- PVC Monitoring Well AKT (2019-2020)
- Steel Monitoring Well Keck (1977)
- Monitoring Well Undocumented Origin
- Approximate Extent of Buried Refuse
- Site Boundary (Approximate)

FIGURE 1

Site Map

1301-1303 North Franklin Street Mount Pleasant, Isabella County, MI

DRAWN BY DESIGNED BY PROJECT NO.

Saved: 6/1/2023 12:17:06 PM W:\Projects\Projects K-O\M3460004\ENGAPPS\M3460004_

ATTACHMENT B BORING AND MONITORING WELL LOG

BORING / WELL ID: MW-300

PAGE 1 OF 3

The Mannik & Smith Group, Inc. 2365 Haggerty Road South, Canton, MI 48188 ph: (734) 397-3100 fax: (734) 397-3131

PROJ	ECT	T NUI	MBER	_M3	460004		PRO	IECT L	OCAT	ION Mt. Pleasant, M	<u> </u>		
DATE	ST	ART	ED _4	/4/23		COMPLETED 4/5/23	BORI	NG DI	AMETI	ER: 6 inches			
DRILL	LINC	G CO	NTRA	стоі	R Caso	cade Drilling	SURVEY COORDINATES: 772,009.8 N; 13,015,468.6 E (USSP MI South)						
DRILL	LINC	G ME	THOD	Ro	tosonic		ТОР	OF CA	SING	ELEV.: 761.58 feet N	NAD83		
LOGG	GED	BY	DJA			CHECKED BY PDH	$oxed{oxed}$ GR	OUND	WATE	R ENCOUNTERED D	URING DRILLIN	IG: 8 FEET BGS	
NOTE	S_						▼ WATER LEVEL AFTER DRILLING: N/A						
O (FEET)	SAMPLE TYPE	NUMBER	RECOVERY (FEET)	GRAPHIC	DEPTH (FEET)	MATERIAL DESCRIPTION	ELEVATION (NAD83)	PID (ppm)	LABORATORY SAMPLE	REMARKS Surface Elev. = 758.60 NAD83		LL DIAGRAM	
 5		SC 1	5.0			SAND and Clayey SAND, Trace - little gravel and debris (brick, wood, asphalt, concrete), Moist (FILL)					Cor	ncrete Pad ntonite Chips from -8' bgs	
 10		SC 2	5.0		10.5	☑ Becomes wet at approximately 8' bgs	748.1						
 15		sc			14.0	Brown SAND, Trace - little Silt, Trace - little Gravel, Wet Light Brown Silty fine SAND, Trace	744.6						
 		3	10.0			Gravel, Wet							
20					24.5		724.4				■ Ber 8-6	ntonite Grout from 4' bgs	
25 		SC 4	10.0		24.5 25.0	Gray Sandy SILT, Wet Gray Silty Clay, Trace - some Sand, Trace - little Gravel, Dry-Moist (Very Hard Till CLAY)	734.1						
30		SC 5	10.0										
					扣	Becomes Dry-Moist, very hard Till Clay							

BORING / WELL ID: MW-300

PAGE 2 OF 3

BORINGWELL LOG (PID) - GINT STD US LAB. GDT - 5/31/23 16:09 - W.\PROJECTS\PROJECTS K-O\M3460004ADMINIBORING LOGS\M3460004 BORING LOGS REV2. GP.

The Mannik & Smith Group, Inc. 2365 Haggerty Road South, Canton, MI 48188 ph: (734) 397-3100 fax: (734) 397-3131

www.manniksmithgroup.com CLIENT City of Mt. Pleasant, MI PROJECT NAME Former Mt Pleasant Landfill PROJECT NUMBER M3460004 PROJECT LOCATION Mt. Pleasant, MI DATE STARTED 4/4/23 COMPLETED 4/5/23 **BORING DIAMETER:** 6 inches **DRILLING CONTRACTOR** Cascade Drilling **SURVEY COORDINATES:** 772,009.8 N; 13,015,468.6 E (USSP MI South) TOP OF CASING ELEV.: 761.58 feet NAD83 DRILLING METHOD Rotosonic ☐ GROUND WATER ENCOUNTERED DURING DRILLING: 8 FEET BGS LOGGED BY DJA CHECKED BY PDH **NOTES** ▼ WATER LEVEL AFTER DRILLING: N/A SAMPLE TYPE NUMBER LABORATORY SAMPLE ELEVATION (NAD83) RECOVERY (FEET) PID (ppm) GRAPHIC LOG DEPTH DEPTH (FEET) MATERIAL DESCRIPTION **REMARKS** WELL DIAGRAM 35 Gray Silty Clay, Trace - some Sand, Trace - little Gravel, Dry-Moist (Very Hard Till CLAY) (continued) SC 5 10.0 (cont. (cont.) 40 Becomes less Sandy from 41-48' bgs. 45 10.0 Bentonite Grout from 50 8-64' bgs 55 SC 10.0 60 Becomes more Sandy and Hardpan-like till at 60' bgs. SC 5.0 65 Bentonite Chips from SC 64-72' bgs 10.0 69.0 Becomes very hard till Clay at 70' bgs.

BORING / WELL ID: MW-300

PAGE 3 OF 3

CLI	ENT	City	of Mt.	Pleasa	ant, MI	ammkomungroup.com	PROJECT NAME Former Mt Pleasant Landfill				
- 1					60004					ION Mt. Pleasant, N	
DA	TE S	TART	ED _4/	/4/23		COMPLETED 4/5/23	BOR	ING DI	AMETE	R: 6 inches	
DRI	LLIN	IG CO	NTRA	CTOR	Casc	ade Drilling	SUR	VEY CO	ORDII	NATES: 772,009.8 N	l; 13,015,468.6 E (USSP MI South)
DRI	LLIN	IG ME	THOD	Roto	sonic		_ TOP	OF CA	SING E	ELEV.: 761.58 feet	NAD83
LO	GGEI	D BY	DJA			CHECKED BY PDH	$_{\perp}$ $ar{egin{array}{c}}$ Gr	OUND	WATE	R ENCOUNTERED I	DURING DRILLING: 8 FEET BGS
NO.	TES						_ <u>▼</u> w	ATER L	EVEL	AFTER DRILLING:	N/A
DEPTH (FFFT)	יירין)	SAMPLE I YPE NUMBER	RECOVERY (FEET)	GRAPHIC LOG	DEPTH (FEET)	MATERIAL DESCRIPTION	ELEVATION (NAD83)	PID (ppm)	LABORATORY SAMPLE	REMARKS	WELL DIAGRAM
		SC 9 (cont.)	10.0 (cont.)			Gray Silty Clay, Trace - some Sand, Trace - little Gravel, Dry-Moist (Very Hard Till CLAY) (continued)					Bentonite Chips from 64-72' bgs
-0\M3460004\DMIN\BORING LOGS\M346\ -0\M3460004\DMIN\BORING LOGS\M346\ 		SC 10	10.0		85.0	Becomes Hardpan-like till from 76.5-85' bgs. Boulder from approx. 81-83' bgs	673.6				2" Diameter 10-Slot PVC Screen
ENV BORING/WELL LOG (PID) - GINT STD US LAB.GDT - 5/31/23 16:09 - W:\PROJECTS\PROJECTS K-O\M3460004\ADMIN\BORING LOGS\M3460004 BORING LOGS\REV2.GPJ						Bottom of borehole at 85.0 feet.					

ATTACHMENT C
PHOTO LOG

Boart Longyear Minisonic Drill Rig (4/4/2023).

Retrieving soil core sample (4/4/2023).

Rotosonic drilling and soil sampling at MW-300 (4/4/2023).

Brown glacial outwash sand from 10.5-14 feet bgs at MW- 300 (4/4/2023).

Brown glacial outwash sand from 10.5-14 feet bgs at MW-300 (4/4/2023).

Lt. brown glacial outwash silty fine sand from 14-24.5 feet bgs at MW-300 (4/4/2023).

Lt. brown glacial outwash silty fine sand from 14-24.5 feet bgs at MW-300 (4/4/2023).

Gray sandy silt (bottom of photo) transitioning to gray glacial till clay at 25 feet bgs at MW-300 (4/4/2023).

Hard glacial till clay from 25-30 feet bgs at MW-300 (4/4/2023).

Hard glacial till clay from 25-30 feet bgs at MW-300 (4/4/2023).

Hard glacial till clay from 30-35 feet bgs at MW-300 (4/4/2023).

Hard glacial till clay from 45-50 feet bgs at MW-300 (4/4/2023).

Very hard glacial till clay from 55-60 feet bgs at MW-300 (4/4/2023).

Very hard glacial till clay from 55-60 feet bgs at MW-300 (4/4/2023).

Hardpan-like glacial till from 60-65 feet bgs at MW-300 (4/4/2023).

Very hard glacial till clay at 70 feet bgs at MW-300 (4/4/2023).

Very hard glacial till clay from 70-75 feet bgs at MW-300 (4/4/2023).

Very hard glacial till clay from 75-80 feet bgs at MW-300 (4/4/2023).

Hardpan-like glacial till from 76.5-80 feet bgs at MW-300 (4/4/2023).

Glacial till from 75-85 feet bgs at MW-300. Note boulder @ 81 -83 ft. bgs near bottom left (4/4/2023).

Hardpan-like glacial till and boulder from 80-85 feet bgs at MW-300 (4/4/2023).

Hardpan-like glacial till and boulder from 80-85 feet bgs at MW-300 (4/4/2023).

Hardpan-like glacial till from 79-81 feet bgs (just above boulder) at MW-300 (4/4/2023).

Very hard glacial till clay at 80 feet bgs at MW-300 (4/4/2023).

Location of boring/monitoring well MW-300 (4/5/2023).

Installing filter sand in annular space at MW-300 (4/5/2023).

Installing bentonite chip seal in annular space at MW-300 (4/5/2023).

Tremie grouting annular space at MW-300 (4/5/2023).

Monitoring well MW-300 looking south (4/5/2023).

Monitoring well MW-300 looking east (4/5/2023).

MW-300 soil sample from 10-15 ft bgs (4/8/2023).

MW-300 soil sample from 15-20 ft bgs (4/8/2023).

MW-300 soil sample from 20-25 ft bgs (4/8/2023).

MW-300 soil sample from 25-30 ft bgs (4/8/2023).

MW-300 soil sample from 30-35 ft bgs (4/8/2023).

MW-300 soil sample from 35-40 ft bgs (4/8/2023).

MW-300 soil sample from 40-45 ft bgs (4/8/2023).

MW-300 soil sample from 45-50 ft bgs (4/8/2023).

MW-300 soil sample from 45-50 ft bgs (4/8/2023).

MW-300 soil sample from 50-55 ft bgs (4/8/2023).

MW-300 soil sample from 55-60 ft bgs (4/8/2023).



MW-300 soil sample from 60-65 ft bgs (4/8/2023).

MW-300 soil sample from 65-70 ft bgs (4/8/2023).

MW-300 soil sample from 70-75 ft bgs (4/8/2023).

MW-300 soil sample from 75-80 ft bgs (4/8/2023).

MW-300 soil sample from 80-85 ft bgs (4/8/2023).

Boulder encountered in MW-300 from approx. from 81-83 ft bgs (4/8/2023).

Boulder encountered in MW-300 from approx. from 81-83 ft bgs (4/8/2023).

Purging Deep Monitoring Well MW-300 (4/20/2023).

Bladder Pump Controller (4/20/2023).

MW-300 Cloudy/Silty Purge Water (4/20/2023).

Purging Deep Monitoring Well MW-300 (4/20/2023).

MW-300 Cloudy Purge Water (4/20/2023).

Establishing MW-300 location coordinates with GPS (4/20/2023).

ATTACHMENT D FIELD SAMPLING FORMS

LOW FLOW GROUND WATER SAMPLING FORM

SPOUP TECHNICAL SKILL. CREATIVE SPIRIT.	SAMPLE LOCATION: MW-360
DATE: 4 / 20 / 23	PROJECT#: M3460004 SITE NAME: FORMER MT PLEASART LANDFILL
OBSERVERS: SASON MODE LALLY	SITE ADDRESS: SITE CONDITIONS:
DEPTH OF WELL: 85' SCREEN LENGTH: 10'	DEPTH TO WATER LEVEL: 13.38'TW WELL DIAMETER: 2"
TUBING TYPE: HDPE MONITORING EQUIPMENT: GEORGY BLADDE	CASING TYPE: PVC PPMP (ROMIN), HORIBA, HDPETUBIL

TIME	WATER LEVEL	TEMP. (°F/°C)	Ph	ORP (mV)	COND. (mS/cm)	TURB. (NTU) ²	DO (mg/L) ¹	VOLUME PURGED	PUMP RATE	NOTES
	stabilized)	+/- 3%	+/- 0.1	+/- 10 mV	+/- 3%	+/- 10%	+/- 10%	(Gallons)	(ml/min)	
110	18.76	53.2	7.26	-114	0.566	10007	6.06			
1110	19,70	52.6	7,40	-181	0.549	10007	4.10			
	9 225	52.3	7.38	-199	0.535	10007	3,63			
116	21.69	52.4	7,58	- 200	0.535	1000+	355			
1119	22.19	53.0	7,54	-201	0.587	10001	3.46			
1123	27.85	53.0	7.56	-206	0.651	10001	3,26			
1125										
1130	24,15	531	7,55	-208	0.803	(000)	307			
1135	25.25	535	7,59	-208	0.654	Looul	204			
1190	25.97	93.7	7,58	-205	0.426	tounl	2.91			
1145										
1150	27,64	53.6	7,52	-197	1.07	lood	2.74			
1155	28.56	535	7,51	-191	1.11	Lovol	2.79	5		
1200	29.63	54.1	7,49	-186	1.17	10007	2.76			
llas	29.95	54,3	7.56	-164	1,17	1000	2.95			
1210	30.47	54.0	7.48		1.24	10001	2.03			
1215	31.42	54.1	7.48	-183	1,50	(000)	2.66			

SAMPLI	E ID:		_						
SAMPLI	E DATE:_								
SAMPLI	E TIME:								
Notes:	NO	SAMPLE	Collected.	WATER !	N	un 11 mas	700	CLOVOY	
110100.									

¹ - 10% for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

 $^{^{2}}$ - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

Sheet 20f2

LOW FLOW GROUND WATER SAMPLING FORM

Smith TECHNICAL SKILL. CREATIVE SPIRIT.	SAMPLE LOCATION: MW-300
DATE: 4 / 20 / 2005	PROJECT #: M3460013 SITE NAME: FORMER MT. PREASANT LANDAU
DA, PH OBSERVERS: LARLY SNIELHART, ELLE RED	SITE ADDRESS:
DEPTH OF WELL: 85' SCREEN LENGTH: 10' TUBING TYPE: HDDE	DEPTH TO WATER LEVEL: 13.38' TOC WELL DIAMETER: PVC CASING TYPE: PVC
MONITORING EQUIPMENT:	

TIME	WATER LEVEL (<0.3 feet once	TEMP. (°F/°C)	Ph	ORP (mV)	COND. (mS/cm)	TURB. (NTU) ²	DO (mg/L) ¹	VOLUME PURGED	PUMP RATE	NOTES
	stabilized)	+/- 3%	+/- 0.1	+/- 10 mV	+/- 3%	+/- 10%	+/- 10%	(Gallons)	(ml/min)	11/1/2/20
1225	33.45	54.6	7.47	1.19	1.19	locot	3.03			
1235	35.22	55.1	7,41	4	1,28	60937	2.83			
1245	36.11	- 310	7,39	-175	1.38	1000	281			
1255	37,55	55.4	7,35	-172	1.49	925	271	10		
1305	38.14	55.0	7.33	-172	1.51		2.53			
1315	36.99	55.6	7,32	-175	1.65	740	1.84			
1225	39.29	57.7	7,29	179	1.76	662	162	12.5		
1354	59.20							17.5		BNES
1411	72.41							22.5		
1430	78.75							27.5		BAILER
7441	81.40							32		BNILER

SAMPLE ID:				
SAMPLE DATE:	-			
SAMPLE TIME:				
Notes:	STOPPED	EVACUATING	N 1446 - 2	32GAI/ONS TOTAL
	Removed	. NO GROVE	IDWATER SAMPLE	COLLECTED, WHERIN
щ	ell was 100 SI	EX+ CLOUDY.		

 $^{^{1}}$ - 10% for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

 $^{^{2}}$ - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

LOW FLOW GROUND WATER SAMPLING FORM

Mannik Smith GROUP	SAMPLE LOCATION: MW-300
DATE: 5 / 14 / 2023	PROJECT #: M 346 000 4 SITE NAME: FORMER MT. PLEASONT LAND FILE
PERSONNEL: DA, PH OBSERVERS:	SITE ADDRESS:
DEPTH OF WELL: 85' SCREEN LENGTH: 10' TUBING TYPE: HDPE	DEPTH TO WATER LEVEL:

TIME	WATER LEVEL (<0.3 feet once	TEMP. (°F/°C)	Ph	ORP (mV)	COND. (mS/cm)	TÜRB. (NTU) ²	DO (mg/L) ¹	VOLUME PURGED	PUMP RATE	NOTES
	stabilized)	+/- 3%	+/- 0.1	+/- 10 mV	+/- 3%	+/- 10%	+/- 10%	(Gallons)	(ml/min)	
1030	13.60							0		
1045	32.54					1 = = (5		
1108	47.61							10		
1140	52.80							15		
1209	59.81							20		
1235	62.87							25		
1309	65.04							30		
1338	65.10					1.		35		
							,			

SAMPLE ID:						
SAMPLE TIME: /400	5 GAIDONS FROM A	10N. we// MW-300	with G	corach	Geospei	RT
Pump + N	EW HDPE TUBING	. WATER SAMPLED	WAS CH	MR- N	b VISIBLE	SILT
OR SEDIME	M.					

^{1 - 10%} for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

² - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

ATTACHMENT E LABORATORY ANALYTICAL REPORT

06-Jun-2023

Dave Adler
The Mannik & Smith Group, Inc.
2365 Haggerty Road South
Suite 100
Canton, MI 48188

Re: Former Mount Pleasant Landfill Work Order: 23052445

Dear Dave,

ALS Environmental received 5 samples on 25-May-2023 10:30 PM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 55.

If you have any questions regarding this report, please feel free to contact me:

ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Sincerely,

Electronically approved by: Bill Carey

Bill Carey

Project Manager

Report of Laboratory Analysis

Certificate No: MI: 0022

ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

ALS Group, USA

Date: 06-Jun-23

Client: The Mannik & Smith Group, Inc.

Project: Former Mount Pleasant Landfill

Work Order: 23052445

Work Order Sample Summary

Lab Samp ID Client Sample ID	Matrix Tag Number	Collection Date	Date Received	Hold
23052445-01 MW-300	Groundwater	5/24/2023 14:00	5/25/2023 22:30	
23052445-02 MW-300F	Groundwater	5/24/2023 14:00	5/25/2023 22:30	
23052445-03 MW-300P	Groundwater	5/24/2023 14:00	5/25/2023 22:30	
23052445-04 Trip Blank	Water	5/24/2023	5/25/2023 22:30	
23052445-05 Field Blank	Water	5/24/2023 14:00	5/25/2023 22:30	

ALS Group, USA Date: 06-Jun-23

Client: The Mannik & Smith Group, Inc. Former Mount Pleasant Landfill **Project:**

QUALIFIERS, ACRONYMS, UNITS WorkOrder: 23052445

ALS Group, USA

Date: 06-Jun-23

Qualifier	<u>Description</u>
*	Value exceeds Regulatory Limit
**	Estimated Value
a	Analyte is non-accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
E	Value above quantitation range
Н	Analyzed outside of Holding Time
Hr	BOD/CBOD - Sample was reset outside Hold Time, value should be considered estimated.
J	Analyte is present at an estimated concentration between the MDL and Report Limit
n	Analyte accreditation is not offered
ND	Not Detected at the Reporting Limit
0	Sample amount is > 4 times amount spiked
Р	Dual Column results percent difference > 40%
R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U X	Analyzed but not detected above the MDL
Α	Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or reagent contamination at the observed level.
Acronym	Description
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
TNTC	Too Numerous To Count
A	APHA Standard Methods
D	ASTM
Е	EPA
SW	SW-846 Update III
Units Reported	Description
μg/L	Micrograms per Liter
mg NH3-N/L	Milligrams Ammonia-Nitrogen per Liter
mg/L	Milligrams per Liter
ng/L	Nanograms per Liter

Client: The Mannik & Smith Group, Inc.

Project: Former Mount Pleasant Landfill

Work Order: 23052445

Case Narrative

The attached "Sample Receipt Checklist" documents the date of receipt, status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. A copy of the laboratory's scope of accreditation is available upon request.

Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting.

Any flags on MS/MSD samples not addressed in this narrative are unrelated to samples in this report.

With the following exceptions, all sample analyses achieved analytical criteria.

Batch 217127, Method E537 Mod, Sample MW-300 (23052445-01E): Sediment present in sample bottle. Sample spiked and poured off into 250 mL HDPE.

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 23052445Sample ID:MW-300Lab ID: 23052445-01

Collection Date: 5/24/2023 02:00 PM Matrix: GROUNDWATER

Date: 06-Jun-2023

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
PCBS			SW8082	4	Prep: SW3511 5/30/23 15:40	Analyst: RM
Aroclor 1016	ND		0.20	μg/L	1	5/30/2023 08:10 PM
Aroclor 1221	ND		0.20	μg/L	1	5/30/2023 08:10 PM
Aroclor 1232	ND		0.20	μg/L	1	5/30/2023 08:10 PM
Aroclor 1242	ND		0.20	μg/L	1	5/30/2023 08:10 PM
Aroclor 1248	ND		0.20	μg/L	1	5/30/2023 08:10 PM
Aroclor 1254	ND		0.20	μg/L	1	5/30/2023 08:10 PM
Aroclor 1260	ND		0.20	μg/L	1	5/30/2023 08:10 PM
Aroclor 1262	ND		0.20	μg/L	1	5/30/2023 08:10 PM
Aroclor 1268	ND		0.20	μg/L	1	5/30/2023 08:10 PM
PCBs, Total	ND		0.20	μg/L	1	5/30/2023 08:10 PM
Surr: Decachlorobiphenyl	88.7	•	45-143	%REC	1	5/30/2023 08:10 PM
Surr: Tetrachloro-m-xylene	99.4	!	64-125	%REC	1	5/30/2023 08:10 PM
MERCURY BY CVAA			SW7470	4	Prep: SW7470 5/30/23 15:26	Analyst: KRA
Mercury	ND		0.00020	mg/L	1	5/30/2023 04:40 PM
METALS BY ICP-MS			SW6020E	3	Prep: SW3015A 6/1/23 16:54	Analyst: STP
Aluminum	0.42		0.010	mg/L	1	6/1/2023 08:01 PM
Antimony	ND		0.0050	mg/L	1	6/1/2023 08:01 PM
Arsenic	ND)	0.0050	mg/L	1	6/1/2023 08:01 PM
Barium	0.030		0.0050	mg/L	1	6/1/2023 08:01 PM
Beryllium	ND)	0.0020	mg/L	1	6/1/2023 08:01 PM
Boron	0.26	i	0.020	mg/L	1	6/1/2023 08:01 PM
Cadmium	ND)	0.0020	mg/L	1	6/1/2023 08:01 PM
Chromium	ND)	0.0050	mg/L	1	6/1/2023 08:01 PM
Copper	ND)	0.0050	mg/L	1	6/1/2023 08:01 PM
Lead	ND)	0.0050	mg/L	1	6/1/2023 08:01 PM
Nickel	ND)	0.0050	mg/L	1	6/1/2023 08:01 PM
Selenium	ND)	0.0050	mg/L	1	6/1/2023 08:01 PM
Silver	ND)	0.0050	mg/L	1	6/1/2023 08:01 PM
Thallium	ND)	0.0050	mg/L	1	6/1/2023 08:01 PM
Zinc	ND)	0.010	mg/L	1	6/1/2023 08:01 PM
PFAS BY EPA 537 MODIFIED			E537 MO	D	Prep: E537 Mod 5/30/23 17:51	Analyst: MNM
Fluorotelomer Sulphonic Acid 4:2 (FtS 4:2)	ND		5.1	ng/L	1	5/31/2023 03:19 AM
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	ND		5.1	ng/L	1	5/31/2023 03:19 AM
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	ND		5.1	ng/L	1	5/31/2023 03:19 AM
Perfluorobutanesulfonic Acid (PFBS)	ND		5.1	ng/L	1	5/31/2023 03:19 AM
Perfluorobutanoic Acid (PFBA)	ND		5.1	ng/L	1	5/31/2023 03:19 AM
Perfluorodecanesulfonic Acid (PFDS)	ND		5.1	ng/L	1	5/31/2023 03:19 AM

Client: The Mannik & Smith Group, Inc.

Project: Former Mount Pleasant Landfill Work Order: 23052445

Sample ID: MW-300 **Lab ID:** 23052445-01

Collection Date: 5/24/2023 02:00 PM Matrix: GROUNDWATER

Date: 06-Jun-2023

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Perfluorodecanoic Acid (PFDA)	ND		5.1	ng/L	1	5/31/2023 03:19 AM
Perfluorododecanoic Acid (PFDoA)	ND		5.1	ng/L	1	5/31/2023 03:19 AM
Perfluoroheptanesulfonic Acid (PFHpS)	ND		5.1	ng/L	1	5/31/2023 03:19 AM
Perfluoroheptanoic Acid (PFHpA)	ND		5.1	ng/L	1	5/31/2023 03:19 AM
Perfluorohexanesulfonic Acid (PFHxS)	ND		5.1	ng/L	1	5/31/2023 03:19 AM
Perfluorohexanoic Acid (PFHxA)	ND		5.1	ng/L	1	5/31/2023 03:19 AM
Perfluorononanesulfonic Acid (PFNS)	ND		5.1	ng/L	1	5/31/2023 03:19 AM
Perfluorononanoic Acid (PFNA)	ND		5.1	ng/L	1	5/31/2023 03:19 AM
Perfluorooctanesulfonamide (PFOSA)	ND		5.1	ng/L	1	5/31/2023 03:19 AM
Perfluorooctanesulfonic Acid (PFOS)	ND		2.0	ng/L	1	5/31/2023 03:19 AM
Perfluorooctanoic Acid (PFOA)	ND		2.0	ng/L	1	5/31/2023 03:19 AM
Perfluoropentanesulfonic Acid (PFPeS)	ND		5.1	ng/L	1	5/31/2023 03:19 AM
Perfluoropentanoic Acid (PFPeA)	ND		5.1	ng/L	1	5/31/2023 03:19 AM
Perfluorotetradecanoic Acid (PFTeA)	ND		5.1	ng/L	1	5/31/2023 03:19 AM
Perfluorotridecanoic Acid (PFTriA)	ND		5.1	ng/L	1	5/31/2023 03:19 AM
Perfluoroundecanoic Acid (PFUnA)	ND		5.1	ng/L	1	5/31/2023 03:19 AM
N-Ethylperfluorooctanesulfonamidoacetic Acid	ND		5.1	ng/L	1	5/31/2023 03:19 AM
N-Methylperfluorooctanesulfonamidoacetic Acid	ND		5.1	ng/L	1	5/31/2023 03:19 AM
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND		5.1	ng/L	1	5/31/2023 03:19 AM
4,8-Dioxa-3H-perfluorononanoic Acid (DONA)	ND		5.1	ng/L	1	5/31/2023 03:19 AM
11CI-Pf3OUdS	ND		5.1	ng/L	1	5/31/2023 03:19 AM
9CI-PF3ONS	ND		5.1	ng/L	1	5/31/2023 03:19 AM
Surr: 13C2-FtS 4:2	95.1		50-150	%REC	1	5/31/2023 03:19 AM
Surr: 13C2-FtS 6:2	99.2		50-150	%REC	1	5/31/2023 03:19 AM
Surr: 13C2-FtS 8:2	72.2		50-150	%REC	1	5/31/2023 03:19 AM
Surr: 13C2-PFDA	79.3		50-150	%REC	1	5/31/2023 03:19 AM
Surr: 13C2-PFDoA	73.9		50-150	%REC	1	5/31/2023 03:19 AM
Surr: 13C2-PFHxA	91.9		50-150	%REC	1	5/31/2023 03:19 AM
Surr: 13C2-PFTeA	97.4		50-150	%REC	1	5/31/2023 03:19 AM
Surr: 13C2-PFUnA	71.5		50-150	%REC	1	5/31/2023 03:19 AM
Surr: 13C3-HFPO-DA	75.2		50-150	%REC	1	5/31/2023 03:19 AM
Surr: 13C3-PFBS	91.1		50-150	%REC	1	5/31/2023 03:19 AM
Surr: 13C4-PFBA	88.4		50-150	%REC	1	5/31/2023 03:19 AM
Surr: 13C4-PFHpA	84.7		50-150	%REC	1	5/31/2023 03:19 AM
Surr: 13C4-PFOA	95.5		50-150	%REC	1	5/31/2023 03:19 AM
Surr: 13C4-PFOS	85.1		50-150	%REC	1	5/31/2023 03:19 AM
Surr: 13C5-PFNA	88.4		50-150	%REC	1	5/31/2023 03:19 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 23052445Sample ID:MW-300Lab ID: 23052445-01

Collection Date: 5/24/2023 02:00 PM Matrix: GROUNDWATER

Date: 06-Jun-2023

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 13C5-PFPeA	74.2		50-150	%REC	1	5/31/2023 03:19 AM
Surr: 13C8-FOSA	78.7	•	50-150	%REC	1	5/31/2023 03:19 AM
Surr: 1802-PFHxS	97.8		50-150	%REC	1	5/31/2023 03:19 AM
Surr: d5-N-EtFOSAA	65.0		50-150	%REC	1	5/31/2023 03:19 AM
Surr: d3-N-MeFOSAA	63.4		50-150	%REC	1	5/31/2023 03:19 AM
SEMI-VOLATILE ORGANIC COMPOUNDS			SW8270E		Prep: SW3510 5/31/23 12:17	Analyst: MMO
1,1`-Biphenyl	ND		3.5	μg/L	1	6/1/2023 03:33 PM
2,4,5-Trichlorophenol	ND		3.5	μg/L	1	6/1/2023 03:33 PM
2,4,6-Trichlorophenol	ND		3.5	μg/L	1	6/1/2023 03:33 PM
2,4-Dichlorophenol	ND		3.5	μg/L	1	6/1/2023 03:33 PM
2,4-Dimethylphenol	ND		3.5	μg/L	1	6/1/2023 03:33 PM
2,4-Dinitrophenol	ND		3.5	μg/L	1	6/1/2023 03:33 PM
2,4-Dinitrotoluene	ND		3.5	μg/L	1	6/1/2023 03:33 PM
2,6-Dinitrotoluene	ND		3.5	μg/L	1	6/1/2023 03:33 PM
2-Chloronaphthalene	ND		3.5	μg/L	1	6/1/2023 03:33 PM
2-Chlorophenol	ND		3.5	μg/L	1	6/1/2023 03:33 PM
2-Methylnaphthalene	ND		3.5	μg/L	1	6/1/2023 03:33 PM
2-Methylphenol	ND		3.5	μg/L	1	6/1/2023 03:33 PM
2-Nitroaniline	ND		3.5	μg/L	1	6/1/2023 03:33 PM
2-Nitrophenol	ND		3.5	μg/L	1	6/1/2023 03:33 PM
3&4-Methylphenol	ND		3.5	μg/L	1	6/1/2023 03:33 PM
3,3´-Dichlorobenzidine	ND		3.5	μg/L	1	6/1/2023 03:33 PM
3-Nitroaniline	ND		3.5	μg/L	1	6/1/2023 03:33 PM
4,6-Dinitro-2-methylphenol	ND		3.5	μg/L	1	6/1/2023 03:33 PM
4-Bromophenyl phenyl ether	ND		3.5	μg/L	1	6/1/2023 03:33 PM
4-Chloro-3-methylphenol	ND		3.5	μg/L	1	6/1/2023 03:33 PM
4-Chloroaniline	ND		3.5	μg/L	1	6/1/2023 03:33 PM
4-Chlorophenyl phenyl ether	ND		3.5	μg/L	1	6/1/2023 03:33 PM
4-Nitroaniline	ND		3.5	μg/L	1	6/1/2023 03:33 PM
4-Nitrophenol	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Acenaphthene	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Acenaphthylene	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Acetophenone	ND		0.69	μg/L	1	6/1/2023 03:33 PM
Anthracene	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Atrazine	ND		0.69	μg/L	1	6/1/2023 03:33 PM
Benzaldehyde	ND		0.69	μg/L	1	6/1/2023 03:33 PM
Benzo(a)anthracene	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Benzo(a)pyrene	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Benzo(b)fluoranthene	ND		3.5	μg/L	1	6/1/2023 03:33 PM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 23052445Sample ID:MW-300Lab ID: 23052445-01

Collection Date: 5/24/2023 02:00 PM Matrix: GROUNDWATER

Date: 06-Jun-2023

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Benzo(g,h,i)perylene	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Benzo(k)fluoranthene	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Bis(2-chloroethoxy)methane	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Bis(2-chloroethyl)ether	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Bis(2-chloroisopropyl)ether	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Bis(2-ethylhexyl)phthalate	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Butyl benzyl phthalate	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Caprolactam	ND		6.9	μg/L	1	6/1/2023 03:33 PM
Carbazole	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Chrysene	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Dibenzo(a,h)anthracene	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Dibenzofuran	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Diethyl phthalate	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Dimethyl phthalate	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Di-n-butyl phthalate	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Di-n-octyl phthalate	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Fluoranthene	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Fluorene	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Hexachlorobenzene	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Hexachlorobutadiene	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Hexachlorocyclopentadiene	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Hexachloroethane	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Indeno(1,2,3-cd)pyrene	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Isophorone	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Naphthalene	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Nitrobenzene	ND		3.5	μg/L	1	6/1/2023 03:33 PM
N-Nitrosodi-n-propylamine	ND		3.5	μg/L	1	6/1/2023 03:33 PM
N-Nitrosodiphenylamine	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Pentachlorophenol	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Phenanthrene	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Phenol	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Pyrene	ND		3.5	μg/L	1	6/1/2023 03:33 PM
Surr: 2,4,6-Tribromophenol	72.1		38-103	%REC	1	6/1/2023 03:33 PM
Surr: 2-Fluorobiphenyl	68.3	:	36-96	%REC	1	6/1/2023 03:33 PM
Surr: 2-Fluorophenol	46.7	•	20-73	%REC	1	6/1/2023 03:33 PM
Surr: 4-Terphenyl-d14	114	!	44-114	%REC	1	6/1/2023 03:33 PM
Surr: Nitrobenzene-d5	77.5	i	33-100	%REC	1	6/1/2023 03:33 PM
Surr: Phenol-d6	30.7	•	10-48	%REC	1	6/1/2023 03:33 PM
OLATILE ORGANIC COMPOLINDS			CMOSCOL	`		Analyst: NAD

VOLATILE ORGANIC COMPOUNDS SW8260D Analyst: NAD

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 23052445Sample ID:MW-300Lab ID: 23052445-01

Collection Date: 5/24/2023 02:00 PM Matrix: GROUNDWATER

Date: 06-Jun-2023

Analyses	Result	Report Qual Limit	Units	Dilution Factor	Date Analyzed
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/27/2023 09:59 AM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	5/27/2023 09:59 AM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/27/2023 09:59 AM
1,1,2-Trichlorotrifluoroethane	ND	1.0	μg/L	1	5/27/2023 09:59 AM
1,1-Dichloroethane	ND	1.0	μg/L	1	5/27/2023 09:59 AM
1,1-Dichloroethene	ND	1.0	μg/L	1	5/27/2023 09:59 AM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/27/2023 09:59 AM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	5/27/2023 09:59 AM
1,2-Dibromoethane	ND	1.0	μg/L	1	5/27/2023 09:59 AM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/27/2023 09:59 AM
1,2-Dichloroethane	ND	1.0	μg/L	1	5/27/2023 09:59 AM
1,2-Dichloropropane	ND	1.0	μg/L	1	5/27/2023 09:59 AM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/27/2023 09:59 AM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/27/2023 09:59 AM
2-Butanone	ND	5.0	μg/L	1	5/27/2023 09:59 AM
2-Hexanone	ND	5.0	μg/L	1	5/27/2023 09:59 AM
4-Methyl-2-pentanone	ND	1.0	μg/L	1	5/27/2023 09:59 AM
Acetone	ND	10	μg/L	1	5/27/2023 09:59 AM
Benzene	ND	1.0	μg/L	1	5/27/2023 09:59 AM
Bromodichloromethane	ND	1.0	μg/L	1	5/27/2023 09:59 AM
Bromoform	ND	1.0	μg/L	1	5/27/2023 09:59 AM
Bromomethane	ND	1.0	μg/L	1	5/27/2023 09:59 AM
Carbon disulfide	ND	1.0	μg/L	1	5/27/2023 09:59 AM
Carbon tetrachloride	ND	1.0	μg/L	1	5/27/2023 09:59 AM
Chlorobenzene	ND	1.0	μg/L	1	5/27/2023 09:59 AM
Chloroethane	ND	1.0	μg/L	1	5/27/2023 09:59 AM
Chloroform	ND	1.0	μg/L	1	5/27/2023 09:59 AM
Chloromethane	ND	1.0	μg/L	1	5/27/2023 09:59 AM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	5/27/2023 09:59 AM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/27/2023 09:59 AM
Cyclohexane	ND	2.0	μg/L	1	5/27/2023 09:59 AM
Dibromochloromethane	ND	1.0	μg/L	1	5/27/2023 09:59 AM
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/27/2023 09:59 AM
Ethylbenzene	ND	1.0	μg/L	1	5/27/2023 09:59 AM
Isopropylbenzene	ND	1.0		1	5/27/2023 09:59 AM
Methyl acetate	ND	2.0	μg/L	1	5/27/2023 09:59 AM
Methyl tert-butyl ether	ND	1.0	μg/L	1	5/27/2023 09:59 AM
Methylcyclohexane	ND	1.0		1	5/27/2023 09:59 AM
Methylene chloride	ND	5.0	μg/L	1	5/27/2023 09:59 AM
Styrene	ND	1.0	μg/L	1	5/27/2023 09:59 AM

Client: The Mannik & Smith Group, Inc.

Project: Former Mount Pleasant Landfill **Work Order:** 23052445

Sample ID: MW-300 **Lab ID:** 23052445-01

Collection Date: 5/24/2023 02:00 PM Matrix: GROUNDWATER

Analyses	Result Q	Report ual Limit	Units	Dilution Factor	Date Analyzed
Tetrachloroethene	ND	1.0	μg/L	1	5/27/2023 09:59 AM
Toluene	ND	1.0	μg/L	1	5/27/2023 09:59 AM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	5/27/2023 09:59 AM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/27/2023 09:59 AM
Trichloroethene	ND	1.0	μg/L	1	5/27/2023 09:59 AM
Trichlorofluoromethane	ND	1.0	μg/L	1	5/27/2023 09:59 AM
Vinyl chloride	ND	1.0	μg/L	1	5/27/2023 09:59 AM
Xylenes, Total	ND	3.0	μg/L	1	5/27/2023 09:59 AM
Surr: 1,2-Dichloroethane-d4	103	80-120	%REC	1	5/27/2023 09:59 AM
Surr: 4-Bromofluorobenzene	95.6	80-120	%REC	1	5/27/2023 09:59 AM
Surr: Dibromofluoromethane	98.4	80-120	%REC	1	5/27/2023 09:59 AM
Surr: Toluene-d8	98.9	80-120	%REC	1	5/27/2023 09:59 AM
AMMONIA AS NITROGEN		E350.1 R	2.0		Analyst: JMT
Ammonia as Nitrogen	1.2	0.020	mg NH3-N/L	_ 1	5/31/2023 12:48 PM

Date: 06-Jun-2023

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 23052445Sample ID:MW-300FLab ID: 23052445-02

Collection Date: 5/24/2023 02:00 PM Matrix: GROUNDWATER

Date: 06-Jun-2023

Analyses	Result Q	Report ual Limit				
MERCURY BY CVAA (DISSOLVED)		SW7470A		Prep: SW7470 5/30/23 15:26	Analyst: KRA	
Mercury	ND	0.00020	mg/L	1	5/30/2023 04:46 PM	
METALS BY ICP-MS (DISSOLVED)		SW6020E	3	Prep: SW3005A 5/30/23 11:01	Analyst: STP	
Aluminum	ND	0.010	mg/L	1	5/30/2023 06:13 PM	
Antimony	ND	0.0050	mg/L	1	5/30/2023 06:13 PM	
Arsenic	ND	0.0050	mg/L	1	5/30/2023 06:13 PM	
Barium	0.023	0.0050	mg/L	1	5/30/2023 06:13 PM	
Beryllium	ND	0.0020	mg/L	1	5/30/2023 06:13 PM	
Boron	0.22	0.020	mg/L	1	5/30/2023 06:13 PM	
Cadmium	ND	0.0020	mg/L	1	5/30/2023 06:13 PM	
Chromium	ND	0.0050	mg/L	1	5/30/2023 06:13 PM	
Copper	ND	0.0050	mg/L	1	5/30/2023 06:13 PM	
Lead	ND	0.0050	mg/L	1	5/30/2023 06:13 PM	
Nickel	ND	0.0050	mg/L	1	5/30/2023 06:13 PM	
Selenium	ND	0.0050	mg/L	1	5/30/2023 06:13 PM	
Silver	ND	0.0050	mg/L	1	5/30/2023 06:13 PM	
Thallium	ND	0.0050	mg/L	1	5/30/2023 06:13 PM	
Zinc	ND	0.010	mg/L	1	5/30/2023 06:13 PM	

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 23052445Sample ID:MW-300PLab ID: 23052445-03

Collection Date: 5/24/2023 02:00 PM Matrix: GROUNDWATER

Date: 06-Jun-2023

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
PFAS BY EPA 537 MODIFIED			E537 MO	D	Prep: E537 Mod 5/30/23 17:51	Analyst: MNM
Fluorotelomer Sulphonic Acid 4:2 (FtS 4:2)	ND		4.9	ng/L	1	5/31/2023 03:33 AM
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	ND		4.9	ng/L	1	5/31/2023 03:33 AM
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	ND		4.9	ng/L	1	5/31/2023 03:33 AM
Perfluorobutanesulfonic Acid (PFBS)	ND		4.9	ng/L	1	5/31/2023 03:33 AM
Perfluorobutanoic Acid (PFBA)	ND		4.9	ng/L	1	5/31/2023 03:33 AM
Perfluorodecanesulfonic Acid (PFDS)	ND		4.9	ng/L	1	5/31/2023 03:33 AM
Perfluorodecanoic Acid (PFDA)	ND		4.9	ng/L	1	5/31/2023 03:33 AM
Perfluorododecanoic Acid (PFDoA)	ND		4.9	ng/L	1	5/31/2023 03:33 AM
Perfluoroheptanesulfonic Acid (PFHpS)	ND		4.9	ng/L	1	5/31/2023 03:33 AM
Perfluoroheptanoic Acid (PFHpA)	ND		4.9	ng/L	1	5/31/2023 03:33 AM
Perfluorohexanesulfonic Acid (PFHxS)	ND		4.9	ng/L	1	5/31/2023 03:33 AM
Perfluorohexanoic Acid (PFHxA)	ND		4.9	ng/L	1	5/31/2023 03:33 AM
Perfluorononanesulfonic Acid (PFNS)	ND		4.9	ng/L	1	5/31/2023 03:33 AM
Perfluorononanoic Acid (PFNA)	ND		4.9	ng/L	1	5/31/2023 03:33 AM
Perfluorooctanesulfonamide (PFOSA)	ND		4.9	ng/L	1	5/31/2023 03:33 AM
Perfluorooctanesulfonic Acid (PFOS)	ND		2.0	ng/L	1	5/31/2023 03:33 AM
Perfluorooctanoic Acid (PFOA)	ND		2.0	ng/L	1	5/31/2023 03:33 AM
Perfluoropentanesulfonic Acid (PFPeS)	ND		4.9	ng/L	1	5/31/2023 03:33 AM
Perfluoropentanoic Acid (PFPeA)	ND		4.9	ng/L	1	5/31/2023 03:33 AM
Perfluorotetradecanoic Acid (PFTeA)	ND		4.9	ng/L	1	5/31/2023 03:33 AM
Perfluorotridecanoic Acid (PFTriA)	ND		4.9	ng/L	1	5/31/2023 03:33 AM
Perfluoroundecanoic Acid (PFUnA)	ND		4.9	ng/L	1	5/31/2023 03:33 AM
N-Ethylperfluorooctanesulfonamidoacetic Acid	ND		4.9	ng/L	1	5/31/2023 03:33 AM
N-Methylperfluorooctanesulfonamidoacetic Acid	ND		4.9	ng/L	1	5/31/2023 03:33 AM
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND		4.9	ng/L	1	5/31/2023 03:33 AM
4,8-Dioxa-3H-perfluorononanoic Acid (DONA)	ND		4.9	ng/L	1	5/31/2023 03:33 AM
11CI-Pf3OUdS	ND		4.9	ng/L	1	5/31/2023 03:33 AM
9CI-PF3ONS	ND		4.9	ng/L	1	5/31/2023 03:33 AM
Surr: 13C2-FtS 4:2	112		50-150	%REC	1	5/31/2023 03:33 AM
Surr: 13C2-FtS 6:2	107	•	50-150	%REC	1	5/31/2023 03:33 AM
Surr: 13C2-FtS 8:2	96.3	}	50-150	%REC	1	5/31/2023 03:33 AM
Surr: 13C2-PFDA	96.7	•	50-150	%REC		5/31/2023 03:33 AM
Surr: 13C2-PFDoA	86.6		50-150	%REC		5/31/2023 03:33 AM
Surr: 13C2-PFHxA	100		50-150	%REC		5/31/2023 03:33 AM
Surr: 13C2-PFTeA	120		50-150	%REC		5/31/2023 03:33 AM
Surr: 13C2-PFUnA	82.5	<u> </u>	50-150	%REC	1	5/31/2023 03:33 AM

Client: The Mannik & Smith Group, Inc.

Project: Former Mount Pleasant Landfill **Work Order:** 23052445

Sample ID: MW-300P **Lab ID:** 23052445-03

Collection Date: 5/24/2023 02:00 PM Matrix: GROUNDWATER

nalyses	Result Qua	Report l Limit	Units	Dilution Factor	Date Analyzed
Surr: 13C3-HFPO-DA	98.6	50-150	%REC	1	5/31/2023 03:33 AM
Surr: 13C3-PFBS	116	50-150	%REC	1	5/31/2023 03:33 AM
Surr: 13C4-PFBA	84.2	50-150	%REC	1	5/31/2023 03:33 AM
Surr: 13C4-PFHpA	105	50-150	%REC	1	5/31/2023 03:33 AM
Surr: 13C4-PFOA	102	50-150	%REC	1	5/31/2023 03:33 AM
Surr: 13C4-PFOS	100	50-150	%REC	1	5/31/2023 03:33 AM
Surr: 13C5-PFNA	94.3	50-150	%REC	1	5/31/2023 03:33 AM
Surr: 13C5-PFPeA	95.8	50-150	%REC	1	5/31/2023 03:33 AM
Surr: 13C8-FOSA	93.9	50-150	%REC	1	5/31/2023 03:33 AM
Surr: 1802-PFHxS	110	50-150	%REC	1	5/31/2023 03:33 AM
Surr: d5-N-EtFOSAA	76.9	50-150	%REC	1	5/31/2023 03:33 AM
Surr: d3-N-MeFOSAA	79.2	50-150	%REC	1	5/31/2023 03:33 AM

Date: 06-Jun-2023

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order:23052445Sample ID:Trip BlankLab ID:23052445-04Collection Date:5/24/2023Matrix:WATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS			SW8260[)		Analyst: HJ
1,1,1-Trichloroethane	ND		1.0	μg/L	1	5/31/2023 01:16 AM
1,1,2,2-Tetrachloroethane	ND		1.0	μg/L	1	5/31/2023 01:16 AM
1,1,2-Trichloroethane	ND		1.0	μg/L	1	5/31/2023 01:16 AM
1,1,2-Trichlorotrifluoroethane	ND		1.0	μg/L	1	5/31/2023 01:16 AM
1,1-Dichloroethane	ND		1.0	μg/L	1	5/31/2023 01:16 AM
1,1-Dichloroethene	ND		1.0	μg/L	1	5/31/2023 01:16 AM
1,2,4-Trichlorobenzene	ND		1.0	μg/L	1	5/31/2023 01:16 AM
1,2-Dibromo-3-chloropropane	ND		1.0	μg/L	1	5/31/2023 01:16 AM
1,2-Dibromoethane	ND		1.0	μg/L	1	5/31/2023 01:16 AM
1,2-Dichlorobenzene	ND		1.0	μg/L	1	5/31/2023 01:16 AM
1,2-Dichloroethane	ND		1.0	μg/L	1	5/31/2023 01:16 AM
1,2-Dichloropropane	ND		1.0	μg/L	1	5/31/2023 01:16 AM
1,3-Dichlorobenzene	ND		1.0	μg/L	1	5/31/2023 01:16 AM
1,4-Dichlorobenzene	ND		1.0	μg/L	1	5/31/2023 01:16 AM
2-Butanone	ND		5.0	μg/L	1	5/31/2023 01:16 AM
2-Hexanone	ND		5.0	μg/L	1	5/31/2023 01:16 AM
4-Methyl-2-pentanone	ND		1.0	μg/L	1	5/31/2023 01:16 AM
Acetone	ND		10	μg/L	1	5/31/2023 01:16 AM
Benzene	ND		1.0	μg/L	1	5/31/2023 01:16 AM
Bromodichloromethane	ND		1.0	μg/L	1	5/31/2023 01:16 AM
Bromoform	ND		1.0	μg/L	1	5/31/2023 01:16 AM
Bromomethane	ND		1.0	μg/L	1	5/31/2023 01:16 AM
Carbon disulfide	ND		1.0	μg/L	1	5/31/2023 01:16 AM
Carbon tetrachloride	ND		1.0	μg/L	1	5/31/2023 01:16 AM
Chlorobenzene	ND		1.0	μg/L	1	5/31/2023 01:16 AM
Chloroethane	ND		1.0	μg/L	1	5/31/2023 01:16 AM
Chloroform	ND		1.0	μg/L	1	5/31/2023 01:16 AM
Chloromethane	ND		1.0	μg/L	1	5/31/2023 01:16 AM
cis-1,2-Dichloroethene	ND		1.0	μg/L	1	5/31/2023 01:16 AM
cis-1,3-Dichloropropene	ND		1.0	μg/L	1	5/31/2023 01:16 AM
Cyclohexane	ND		2.0	μg/L	1	5/31/2023 01:16 AM
Dibromochloromethane	ND		1.0	μg/L	1	5/31/2023 01:16 AM
Dichlorodifluoromethane	ND		1.0	μg/L	1	5/31/2023 01:16 AM
Ethylbenzene	ND		1.0	μg/L	1	5/31/2023 01:16 AM
Isopropylbenzene	ND		1.0	μg/L	1	5/31/2023 01:16 AM
Methyl acetate	ND		2.0	μg/L	1	5/31/2023 01:16 AM
Methyl tert-butyl ether	ND		1.0	μg/L	1	5/31/2023 01:16 AM
Methylcyclohexane	ND		1.0	μg/L	1	5/31/2023 01:16 AM

Note: See Qualifiers page for a list of qualifiers and their definitions.

Date: 06-Jun-2023

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order:23052445Sample ID:Trip BlankLab ID:23052445-04Collection Date:5/24/2023Matrix:WATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Methylene chloride	ND		5.0	μg/L	1	5/31/2023 01:16 AM
Styrene	ND		1.0	μg/L	1	5/31/2023 01:16 AM
Tetrachloroethene	ND		1.0	μg/L	1	5/31/2023 01:16 AM
Toluene	ND		1.0	μg/L	1	5/31/2023 01:16 AM
trans-1,2-Dichloroethene	ND		1.0	μg/L	1	5/31/2023 01:16 AM
trans-1,3-Dichloropropene	ND		1.0	μg/L	1	5/31/2023 01:16 AM
Trichloroethene	ND		1.0	μg/L	1	5/31/2023 01:16 AM
Trichlorofluoromethane	ND		1.0	μg/L	1	5/31/2023 01:16 AM
Vinyl chloride	ND		1.0	μg/L	1	5/31/2023 01:16 AM
Xylenes, Total	ND		3.0	μg/L	1	5/31/2023 01:16 AM
Surr: 1,2-Dichloroethane-d4	98.3		80-120	%REC	1	5/31/2023 01:16 AM
Surr: 4-Bromofluorobenzene	100		80-120	%REC	1	5/31/2023 01:16 AM
Surr: Dibromofluoromethane	93.0		80-120	%REC	1	5/31/2023 01:16 AM
Surr: Toluene-d8	99.8		80-120	%REC	1	5/31/2023 01:16 AM

Date: 06-Jun-2023

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order:23052445Sample ID:Field BlankLab ID:23052445-05Collection Date:5/24/2023 02:00 PMMatrix:WATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
PFAS BY EPA 537 MODIFIED			E537 MO	D	Prep: E537 Mod 5/30/23 17:51	Analyst: MNM
Fluorotelomer Sulphonic Acid 4:2 (FtS 4:2)	ND		4.9	ng/L	1	5/31/2023 04:28 AM
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	ND		4.9	ng/L	1	5/31/2023 04:28 AM
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	ND		4.9	ng/L	1	5/31/2023 04:28 AM
Perfluorobutanesulfonic Acid (PFBS)	ND		4.9	ng/L	1	5/31/2023 04:28 AM
Perfluorobutanoic Acid (PFBA)	ND		4.9	ng/L	1	5/31/2023 04:28 AM
Perfluorodecanesulfonic Acid (PFDS)	ND		4.9	ng/L	1	5/31/2023 04:28 AM
Perfluorodecanoic Acid (PFDA)	ND		4.9	ng/L	1	5/31/2023 04:28 AM
Perfluorododecanoic Acid (PFDoA)	ND		4.9	ng/L	1	5/31/2023 04:28 AM
Perfluoroheptanesulfonic Acid (PFHpS)	ND		4.9	ng/L	1	5/31/2023 04:28 AM
Perfluoroheptanoic Acid (PFHpA)	ND		4.9	ng/L	1	5/31/2023 04:28 AM
Perfluorohexanesulfonic Acid (PFHxS)	ND		4.9	ng/L	1	5/31/2023 04:28 AM
Perfluorohexanoic Acid (PFHxA)	ND		4.9	ng/L	1	5/31/2023 04:28 AM
Perfluorononanesulfonic Acid (PFNS)	ND		4.9	ng/L	1	5/31/2023 04:28 AM
Perfluorononanoic Acid (PFNA)	ND		4.9	ng/L	1	5/31/2023 04:28 AM
Perfluorooctanesulfonamide (PFOSA)	ND		4.9	ng/L	1	5/31/2023 04:28 AM
Perfluorooctanesulfonic Acid (PFOS)	ND		2.0	ng/L	1	5/31/2023 04:28 AM
Perfluorooctanoic Acid (PFOA)	ND		2.0	ng/L	1	5/31/2023 04:28 AM
Perfluoropentanesulfonic Acid (PFPeS)	ND		4.9	ng/L	1	5/31/2023 04:28 AM
Perfluoropentanoic Acid (PFPeA)	ND		4.9	ng/L	1	5/31/2023 04:28 AM
Perfluorotetradecanoic Acid (PFTeA)	ND		4.9	ng/L	1	5/31/2023 04:28 AM
Perfluorotridecanoic Acid (PFTriA)	ND		4.9	ng/L	1	5/31/2023 04:28 AM
Perfluoroundecanoic Acid (PFUnA)	ND		4.9	ng/L	1	5/31/2023 04:28 AM
N-Ethylperfluorooctanesulfonamidoacetic Acid	ND		4.9	ng/L	1	5/31/2023 04:28 AM
N-Methylperfluorooctanesulfonamidoacetic Acid	ND		4.9	ng/L	1	5/31/2023 04:28 AM
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND		4.9	ng/L	1	5/31/2023 04:28 AM
4,8-Dioxa-3H-perfluorononanoic Acid (DONA)	ND		4.9	ng/L	1	5/31/2023 04:28 AM
11CI-Pf3OUdS	ND		4.9	ng/L	1	5/31/2023 04:28 AM
9CI-PF3ONS	ND		4.9	ng/L	1	5/31/2023 04:28 AM
Surr: 13C2-FtS 4:2	105	i	50-150	%REC	1	5/31/2023 04:28 AM
Surr: 13C2-FtS 6:2	118	!	50-150	%REC	1	5/31/2023 04:28 AM
Surr: 13C2-FtS 8:2	125		50-150	%REC	1	5/31/2023 04:28 AM
Surr: 13C2-PFDA	117		50-150	%REC		5/31/2023 04:28 AM
Surr: 13C2-PFDoA	99.6		50-150	%REC		5/31/2023 04:28 AM
Surr: 13C2-PFHxA	111		50-150	%REC		5/31/2023 04:28 AM
Surr: 13C2-PFTeA	136		50-150	%REC		5/31/2023 04:28 AM
Surr: 13C2-PFUnA	96.5		50-150	%REC	1	5/31/2023 04:28 AM

Note: See Qualifiers page for a list of qualifiers and their definitions.

Date: 06-Jun-2023

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 23052445Sample ID:Field BlankLab ID: 23052445-05

Collection Date: 5/24/2023 02:00 PM Matrix: WATER

nalyses	Result Qua	Report al Limit	Units	Dilution Factor	Date Analyzed
Surr: 13C3-HFPO-DA	105	50-150	%REC	1	5/31/2023 04:28 AM
Surr: 13C3-PFBS	131	50-150	%REC	1	5/31/2023 04:28 AM
Surr: 13C4-PFBA	106	50-150	%REC	1	5/31/2023 04:28 AM
Surr: 13C4-PFHpA	125	50-150	%REC	1	5/31/2023 04:28 AM
Surr: 13C4-PFOA	118	50-150	%REC	1	5/31/2023 04:28 AM
Surr: 13C4-PFOS	122	50-150	%REC	1	5/31/2023 04:28 AM
Surr: 13C5-PFNA	111	50-150	%REC	1	5/31/2023 04:28 AM
Surr: 13C5-PFPeA	114	50-150	%REC	1	5/31/2023 04:28 AM
Surr: 13C8-FOSA	110	50-150	%REC	1	5/31/2023 04:28 AM
Surr: 1802-PFHxS	114	50-150	%REC	1	5/31/2023 04:28 AM
Surr: d5-N-EtFOSAA	91.3	50-150	%REC	1	5/31/2023 04:28 AM
Surr: d3-N-MeFOSAA	85.2	50-150	%REC	1	5/31/2023 04:28 AM

Date: 06-Jun-2023

Work Order: 23052445

Project: Former Mount Pleasant Landfill

QC BATCH REPORT

Date: 06-Jun-23

Batch ID: 217137	Instrument ID G(C14		Metho	d: SW808	32A						
MBLK	Sample ID: PBLKW1-	217137-217	137			Units: µg/L			Analysis	Date: 5/30	0/2023 06:36 PM	
Client ID:		Run I): GC14_2	230530B		Se	qNo: 960 8	B256	Prep Date: 5/30	/2023	DF: 1	
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
Aroclor 1016		ND	0.20									
Aroclor 1221		ND	0.20									
Aroclor 1232		ND	0.20									
Aroclor 1242		ND	0.20									
Aroclor 1248		ND	0.20									
Aroclor 1254		ND	0.20									
Aroclor 1260		ND	0.20									
Aroclor 1262		ND	0.20									
Aroclor 1268		ND	0.20									
PCBs, Total		ND	0.20									
Surr: Decachlorobip	henyl	0.2434	0	0.25		0	97.4	45-143	0			
Surr: Tetrachloro-m-	-xylene	0.2284	0	0.25		0	91.4	64-125	0			
LCS	Sample ID: PLCSW1-2	217137-217	137			ι	Jnits: µg/L	-	Analysis Date: 5/3			59 PM
Client ID:		Run ID	C GC14_2	230530B		Se	qNo: 960	08258 Prep Date: 5/30/2023		/2023	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aroclor 1016		5.302	0.20	5		0	106	77-126	0			
Aroclor 1260		4.686	0.20	5		0	93.7	66-126	0			
Surr: Decachlorobip	henvl	0.2646	0	0.25		0	106	45-143	0			
Surr: Tetrachloro-m-		0.2716	0	0.25		0	109	64-125	0			
MS	Sample ID: 23052409 -	02B MS				ι	Jnits: µg/L	-	Analysis	Date: 5/30)/2023 07:	11 PM
Client ID:	·): GC14_2	230530B			eqNo: 960 8		Prep Date: 5/30		DF: 1	
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
Aroclor 1016		5.414	0.20	5		0	108	77-126	0			
Aroclor 1260		5.049	0.20	5	_	0	101	66-126	0			
Surr: Decachlorobip	henyl	0.2492	0	0.25		0	99.7	45-143	0			
Surr: Tetrachloro-m-	-xylene	0.462	0	0.25		0	185	64-125	0			S
MSD	Sample ID: 23052409 -	02B MSD				ι	Jnits: µg/L	Inits: μg/L Analysis Date: 5/3		Date: 5/30)/2023 07:	23 PM
Client ID:		Run I	CC14_2	230530B		SeqNo: 9608260 Prep Date: 5/30/2023		/2023	DF: 1			
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
Aroclor 1016		5.347	0.20	5		0	107	77-126	5.414	1.25	20	
Aroclor 1260		5.163	0.20	5		0	103	66-126	5.049	2.22	20	
Surr: Decachlorobip	henyl	0.279	0	0.25		0	112	45-143	0.2492	11.3	20	
Surr: Tetrachloro-m-		0.4802	0	0.25		0	192	64-125	0.462	3.86	20	S

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: 217137 Instrument ID GC14 Method: SW8082A

The following samples were analyzed in this batch: 23052445-01C

Note:

See Qualifiers Page for a list of Qualifiers and their explanation.

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: 217154	Instrument ID HG4			ivietho	d: SW747	UA					
MBLK	Sample ID: MBLK-217154	4-2171	54			Units: m	g/L	Analysis Date: 5/30/2023 03:54 F			
Client ID:		Run	D: HG4_2 3	30530B		SeqNo: 96	04039	Prep Date: 5/30	0/2023	DF: 1	
Analyte	R	esult	PQL	SPK Val	SPK Ref Value	%RE0	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury		ND	0.00020								
LCS	Sample ID: LCS-217154-2	217154	ļ			Units: m	g/L	Analysis	s Date: 5/30	0/2023 03:	56 PN
Client ID:		Run	D: HG4_2 3	30530B		SeqNo: 96	04040	Prep Date: 5/30	0/2023	DF: 1	
Analyte	R	esult	PQL	SPK Val	SPK Ref Value	%RE	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury	0.0	0213	0.00020	0.002		0 106	80-120	0			
MS	Sample ID: 23052445-01F	FMS				Units: m	g/L	Analysis	Date: 5/3 (0/2023 04:	42 PN
Client ID: MW-300		Run	D: HG4_2 3	30530B		SeqNo: 96	04066	Prep Date: 5/30	0/2023	DF: 1	
Analyte	R	esult	PQL	SPK Val	SPK Ref Value	%RE0	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury	0.0	0192	0.00020	0.002	-0.000025	55 97.3	75-125	0			
MSD	Sample ID: 23052445-01F	FMSD				Units: m	g/L	Analysis	s Date: 5/3 (0/2023 04:	44 PN
Client ID: MW-300		Run	D: HG4_2 3	30530B		SeqNo: 96	04067	Prep Date: 5/30	0/2023	DF: 1	
Analyte	R	esult	PQL	SPK Val	SPK Ref Value	%RE0	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury	0.00	1905	0.00020	0.002	-0.000025	55 96.5	75-125	0.00192	0.784	20	
The following samp	les were analyzed in this l	batch:	23	052445-011	F 23	052445-02	A				

Client: The Mannik & Smith Group, Inc.

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: 217123	Instrument ID ICPMS3	Method:	SW6020B
------------------	----------------------	---------	---------

MBLK	Sample ID: MBLK-217123-21712	3			Units: mg/	L	Analys	is Date: 5/3	0/2023 05	:41 PM
Client ID:	Run II	Run ID: ICPMS3_230530A			SeqNo: 960	5010	Prep Date: 5/3	DF: 1	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum	ND	0.010								
Antimony	ND	0.0050								
Arsenic	ND	0.0050								
Barium	ND	0.0050								
Beryllium	ND	0.0020								
Boron	ND	0.020								
Cadmium	ND	0.0020								
Chromium	ND	0.0050								
Copper	ND	0.0050								
Lead	ND	0.0050								
Nickel	ND	0.0050								
Selenium	ND	0.0050								
Silver	ND	0.0050								
Thallium	ND	0.0050								
Zinc	ND	0.010								

LCS	Sample ID: LCS-217123-2171		L	Jnits: mg/	L	Analysis Date: 5/30/2023 05:43 PM					
Client ID:	Rui	ID: ICPMS	3_230530A		Se	qNo: 960 !	5011	Prep Date: 5/30	/2023	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum Antimony	0.1036 0.1014		0.1 0.1		0	104 101	80-120 80-120				'
Arsenic	0.1025		0.1		0	103	80-120				
Barium	0.1004	0.0050	0.1		0	100	80-120	0			
Beryllium	0.09793	0.0020	0.1		0	97.9	80-120	0			
Boron	0.4615	0.020	0.5		0	92.3	80-120	0			
Cadmium	0.101	0.0020	0.1		0	101	80-120	0			
Chromium	0.1024	0.0050	0.1		0	102	80-120	0			
Copper	0.104	0.0050	0.1		0	104	80-120	0			
Lead	0.09949	0.0050	0.1		0	99.5	80-120	0			
Nickel	0.1023	0.0050	0.1		0	102	80-120	0			
Selenium	0.1064	0.0050	0.1		0	106	80-120	0			
Silver	0.1051	0.0050	0.1		0	105	80-120	0			
Thallium	0.09564	0.0050	0.1		0	95.6	80-120	0			
Zinc	0.1046	0.010	0.1		0	105	80-120	0			

Client: The Mannik & Smith Group, Inc.

Work Order: 23052445

Boron

Lead

Cadmium

Thallium

Project: Former Mount Pleasant Landfill

4.71

1.026

1.22

0.9206

0.20

0.020

0.050

0.050

Batch ID: 217123	Instrument ID ICPMS3 Metho					20E	В					
MS	Sample ID: 23051019-0	6BMS					Units: mg/l	L	Anal	lysis Date: 5/3	0/2023 05:	46 PM
Client ID:		Run I	: ICPMS	3_230530A		S	SeqNo: 9605	5013	Prep Date:	5/30/2023	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	f	%REC	Control Limit	RPD Ref Value	f %RPD	RPD Limit	Qual
Aluminum		1.04	0.10	1	0.064	149	97.5	80-120		0		
Barium		1.104	0.050	1	0.11	147	98.9	80-120		0		
Beryllium	(0.9896	0.020	1	0.00)11	98.8	80-120		0		

0.1348

0.05414

0.2617

0.01316

91.5

97.2

95.9

90.7

80-120

80-120

80-120

80-120

0

0

0

0

5

1

1

1

MS	Sample ID: 23051019-06BN	MS					Units: mg/L		Anal	ysis Date: 5/3	1/2023 12:	06 PM
Client ID:		Run ID: I	CPMS3_	_230531A		S	eqNo: 9607	241	Prep Date:	5/30/2023	DF: 1	
Analyte	Res	sult	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony	0.99	957 (0.050	1	0.0067	78	98.9	80-120		0		
Arsenic	1.0	019 (0.050	1	0.0005	57	102	80-120		0		
Chromium	0.99	945 (0.050	1	0.0021	15	99.2	80-120		0		
Copper	0.98	857 (0.050	1	0.0063	35	97.9	80-120		0		
Nickel	0.99	953 (0.050	1	0.010	09	98.4	80-120		0		
Selenium	1.0	056 (0.050	1	0.0040	80	105	80-120		0		
Silver	0.98	824 (0.050	1	0.0000	09	98.2	80-120		0		
Zinc	2.7	761	0.10	1	1.76	61	100	80-120		0		

MSD	Sample ID: 23051019-06BN	ISD			Units: r	ng/L	Analysis	Date: 5/30	0/2023 05:	48 PM
Client ID:	F	Run ID: ICPM	S3_230530A		SeqNo: 9	605014	Prep Date: 5/30	0/2023	DF: 1	
Analyte	Res	sult PQL	. SPK Val	SPK Ref Value	%RE	Control C Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum	1.0	69 0.10	1	0.064	49 10	0 80-120	1.04	2.75	20	
Barium	1.1	36 0.050	1	0.11	47 10	2 80-120	1.104	2.91	20	
Beryllium	1.0	11 0.020	1		0 10	1 80-120	0.9896	2.16	20	
Boron	4.8	45 0.20	5		0 96	9 80-120	4.71	2.81	20	
Cadmium	1.0	56 0.020	1	0.054	14 10	0 80-120	1.026	2.91	20	
Lead	1.2	62 0.050	1	0.26	17 10	0 80-120	1.22	3.33	20	
Thallium	0.95	98 0.050	1	0.013	16 94	7 80-120	0.9206	4.18	20	

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: 217123 Instrument ID ICPMS3 Method: SW6020B

MSD	Sample ID: 23051019-06BN	ISD				Units: mg/	L	Analysis	Date: 5/31	/2023 12:	08 PM
Client ID:	F	Run ID:	ICPMS3	3_230531A		SeqNo: 960 7	7243	Prep Date: 5/30	/2023	DF: 1	
Analyte	Res	sult	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony	1.0	009	0.050	1	0.0067	8 100	80-120	0.9957	1.29	20	
Arsenic	1.0)27	0.050	1	0.0005	7 103	80-120	1.019	0.762	20	
Chromium	0.99	958	0.050	1	0.0021	5 99.4	80-120	0.9945	0.132	20	
Copper	0.99	993	0.050	1	0.0063	5 99.3	80-120	0.9857	1.37	20	
Nickel	1.0	009	0.050	1	0.010	9 99.8	80-120	0.9953	1.36	20	
Selenium	1.0	99	0.050	1	0.0040	8 109	80-120	1.056	3.93	20	
Silver	0.98	348	0.050	1	0.0000	9 98.5	80-120	0.9824	0.244	20	
Zinc	2.7	787	0.10	1	1.76	1 103	80-120	2.761	0.922	20	

The following samples were analyzed in this batch:

23052445-02A

Client: The Mannik & Smith Group, Inc.

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: 217388	Instrument ID ICPMS3	Method:	SW6020B
------------------	----------------------	---------	---------

MBLK	Sample ID: MBLK-217388-21738	38			Units: mg/	L	Analys	is Date: 6/1	/2023 07:	57 PM
Client ID:	Run I	D: ICPMS	3_230601A		SeqNo: 961	4350	Prep Date: 6/1	1/2023	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum	ND	0.010								
Antimony	ND	0.0050								
Arsenic	ND	0.0050								
Barium	ND	0.0050								
Beryllium	ND	0.0020								
Boron	ND	0.020								
Cadmium	ND	0.0020								
Chromium	ND	0.0050								
Copper	ND	0.0050								
Lead	ND	0.0050								
Nickel	ND	0.0050								
Selenium	ND	0.0050								
Silver	ND	0.0050								
Thallium	ND	0.0050								
Zinc	0.003465	0.010								J

LCS	Sample ID: LCS-217388-	-217388				U	Inits: mg/l	_	Analys	is Date: 6/1 /	2023 07:5	9 PM
Client ID:		Run ID	: ICPMS3	_230601A		Se	qNo: 961 4	351	Prep Date: 6/	1/2023	DF: 1	
Analyte	F	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum	0	.1148	0.010	0.1		0	115	80-120		0		
Antimony	0.0	09976	0.0050	0.1		0	99.8	80-120		0		
Arsenic	0.0	09613	0.0050	0.1		0	96.1	80-120		0		
Barium	0	.1029	0.0050	0.1		0	103	80-120		0		
Beryllium	0.0	09966	0.0020	0.1		0	99.7	80-120		0		
Boron	0	.4976	0.020	0.5		0	99.5	80-120		0		
Cadmium	0.0	09932	0.0020	0.1		0	99.3	80-120		0		
Chromium	0.0	09822	0.0050	0.1		0	98.2	80-120		0		
Copper	0.0	09724	0.0050	0.1		0	97.2	80-120		0		
Lead	0.0	09973	0.0050	0.1		0	99.7	80-120		0		
Nickel	0.0	09558	0.0050	0.1		0	95.6	80-120		0		
Selenium	0.0	09943	0.0050	0.1		0	99.4	80-120		0		
Silver		0.103	0.0050	0.1		0	103	80-120		0		
Thallium	0.0	09732	0.0050	0.1		0	97.3	80-120		0		
Zinc	0	.1019	0.010	0.1		0	102	80-120		0		

Client: The Mannik & Smith Group, Inc.

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: 217388 Instrument ID ICPMS3 Method: SW6020B

MS	Sample ID: 23052606-10AMS				Units: mg/	L	Analysi	s Date: 6/1	/2023 08:1	8 PM
Client ID:	Run I	D: ICPMS	3_230601A	S	SeqNo: 961 4	4362	Prep Date: 6/1	/2023	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum	0.1024	0.010	0.1	0.001845	101	75-125	C)		
Antimony	0.1016	0.0050	0.1	0.0000946	102	75-125	C)		
Arsenic	0.0972	0.0050	0.1	0.0002376	97	75-125	C)		
Barium	0.1936	0.0050	0.1	0.0919	102	75-125	C)		
Beryllium	0.1021	0.0020	0.1	0.0000484	102	75-125	C)		
Boron	0.5487	0.020	0.5	0.04667	100	75-125	C)		
Cadmium	0.09889	0.0020	0.1	0.0000198	98.9	75-125	C)		
Chromium	0.09799	0.0050	0.1	0.0001782	97.8	75-125	C)		
Copper	0.09499	0.0050	0.1	0.0004675	94.5	75-125	C)		
Lead	0.1007	0.0050	0.1	0.0000297	101	75-125	C)		
Nickel	0.09494	0.0050	0.1	0.0002442	94.7	75-125	C)		
Selenium	0.103	0.0050	0.1	-0.0002563	103	75-125	C)		
Silver	0.1011	0.0050	0.1	0	101	75-125	C)		
Thallium	0.09787	0.0050	0.1	0.000022	97.9	75-125	C)		
Zinc	0.09927	0.010	0.1	0.003094	96.2	75-125	C)		

MSD	Sample ID: 23052606-10AMSD			l	Jnits: mg/	L	Analysis	Date: 6/1/	2023 08:2	0 PM
Client ID:	Run	ID: ICPMS	3_230601A	Se	eqNo: 961	4363	Prep Date: 6/1/2	2023	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum	0.1019	0.010	0.1	0.001845	100	75-125	0.1024	0.429	20	
Antimony	0.1008	0.0050	0.1	0.0000946	101	75-125	0.1016	0.863	20	
Arsenic	0.09772	0.0050	0.1	0.0002376	97.5	75-125	0.0972	0.535	20	
Barium	0.1928	0.0050	0.1	0.0919	101	75-125	0.1936	0.438	20	
Beryllium	0.09983	0.0020	0.1	0.0000484	99.8	75-125	0.1021	2.28	20	
Boron	0.5423	0.020	0.5	0.04667	99.1	75-125	0.5487	1.17	20	
Cadmium	0.09845	0.0020	0.1	0.0000198	98.4	75-125	0.09889	0.449	20	
Chromium	0.09832	0.0050	0.1	0.0001782	98.1	75-125	0.09799	0.335	20	
Copper	0.09439	0.0050	0.1	0.0004675	93.9	75-125	0.09499	0.639	20	
Lead	0.09959	0.0050	0.1	0.0000297	99.6	75-125	0.1007	1.13	20	
Nickel	0.09443	0.0050	0.1	0.0002442	94.2	75-125	0.09494	0.538	20	
Selenium	0.09992	0.0050	0.1	-0.0002563	100	75-125	0.103	3.07	20	
Silver	0.09986	0.0050	0.1	0	99.9	75-125	0.1011	1.26	20	
Thallium	0.09864	0.0050	0.1	0.000022	98.6	75-125	0.09787	0.785	20	
Zinc	0.09875	0.010	0.1	0.003094	95.7	75-125	0.09927	0.524	20	

The following samples were analyzed in this batch:

23052445-01F

Client: The Mannik & Smith Group, Inc.

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: 217127 Instrument ID LCMS1 Method: E537 Mod

MBLK S	Sample ID: MBLK-2	17127-217127	,			Units: ng/l	_	Analys	is Date: 5/3	0/2023 10	:58 PM
Client ID:		Run ID	LCMS1	_230530A		SeqNo: 960	7201	Prep Date: 5/3	30/2023	DF: 1	
					SPK Ref		Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qua
Fluorotelomer Sulphoni	c A cid 4:2 (EtS	ND	5.0								
Fluorotelomer Sulphoni		ND	5.0								
Fluorotelomer Sulphoni	· · · · · · · · · · · · · · · · · · ·	ND	5.0								
Perfluorobutanesulfonio		ND	5.0								
Perfluorobutanoic Acid		ND	5.0								
Perfluorodecanesulfonio	` ,	ND	5.0								
Perfluorodecanoic Acid	,	ND	5.0								
Perfluorododecanoic Ad		ND	5.0								
Perfluoroheptanesulfon		ND	5.0								
Perfluoroheptanoic Acid	` '	ND	5.0								
Perfluorohexanesulfoni		ND	5.0								
Perfluorohexanoic Acid	(PFHxA)	ND	5.0								
Perfluorononanesulfoni	c Acid (PFNS)	ND	5.0								
Perfluorononanoic Acid	(PFNA)	ND	5.0								
Perfluorooctanesulfona	mide (PFOSA)	ND	5.0								
Perfluorooctanesulfonic	: Acid (PFOS)	ND	2.0								
Perfluorooctanoic Acid	(PFOA)	ND	2.0								
Perfluoropentanesulfon	ic Acid (PFPeS	ND	5.0								
Perfluoropentanoic Acid	d (PFPeA)	ND	5.0								
Perfluorotetradecanoic	Acid (PFTeA)	ND	5.0								
Perfluorotridecanoic Ac	id (PFTriA)	ND	5.0								
Perfluoroundecanoic Ad	cid (PFUnA)	ND	5.0								
N-Ethylperfluorooctanes	sulfonamidoace	ND	5.0								
N-Methylperfluorooctan	esulfonamidoa	ND	5.0								
Hexafluoropropylene ox	dide dimer acid	ND	5.0								
4,8-Dioxa-3H-perfluoror	nonanoic Acid (ND	5.0								
11CI-Pf3OUdS		ND	5.0								
9CI-PF3ONS		ND	5.0								
Surr: 13C2-FtS 4:2		119.5	0	149.4		0 79.9	50-150	(0		
Surr: 13C2-FtS 6:2		134.5	0	152		0 88.5	50-150	(0		
Surr: 13C2-FtS 8:2		144.7	0	153.3		0 94.4	50-150	(0		
Surr: 13C2-PFDA		137.4	0	160		0 85.9	50-150	(0		
Surr: 13C2-PFDoA		132.9	0	160		0 83.1	50-150	(0		
Surr: 13C2-PFHxA		139.2	0	160		0 87	50-150	(0		
Surr: 13C2-PFTeA		187.6	0	160		0 117	50-150	(0		
Surr: 13C2-PFUnA		127	0	160		0 79.4	50-150	(0		
Surr: 13C3-HFPO-DA	4	130.6	0	160		0 81.6	50-150	(0		
Surr: 13C3-PFBS		148.7	0	148.8		0 99.9	50-150	(0		
Surr: 13C4-PFBA		129.6	0	160		0 81	50-150	(0		
Surr: 13C4-PFHpA		142.6	0	160		0 89.1	50-150		0		
Surr: 13C4-PFOA		145.7	0	160		0 91.1	50-150	(0		
Surr: 13C4-PFOS		139	0	152.8		0 91	50-150		0		

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: 217127	Instrument ID LCMS1		Method	E537 Mod			
Surr: 13C5-PFNA	139.3	0	160	0	87	50-150	0
Surr: 13C5-PFPeA	137.8	0	160	0	86.1	50-150	0
Surr: 13C8-FOSA	126.4	0	160	0	79	50-150	0
Surr: 1802-PFHxS	137.8	0	151.2	0	91.1	50-150	0
Surr: d5-N-EtFOSAA	122	0	160	0	76.2	50-150	0
Surr: d3-N-MeFOSAA	119.9	0	160	0	75	50-150	0

Note:

See Qualifiers Page for a list of Qualifiers and their explanation.

QC Page: 10 of 35

Client: The Mannik & Smith Group, Inc.

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: 217127 Instrument ID LCMS1 Method: E537 Mod

LCS S	ample ID: LCS-217	7127-217127				U	nits: ng/L		Analysis	Date: 5/3	1/2023 08:	38 PM
Client ID:		Run ID	LCMS1	_230531A		Sec	qNo: 961 ′	1558	Prep Date: 5/30	/2023	DF: 1	
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qua
Fluorotelomer Sulphonic	Acid 4:2 (FtS	28.86	5.0	29.9		0	96.5	63-143	0			
Fluorotelomer Sulphonic	Acid 6:2 (FtS	29.21	5.0	30.3		0	96.4	63-162	0			
Fluorotelomer Sulphonic	Acid 8:2 (FtS	27.5	5.0	30.7		0	89.6	61-165	0			
Perfluorobutanesulfonic	Acid (PFBS)	24.97	5.0	28.3		0	88.2	72-130	0			
Perfluorobutanoic Acid (PFBA)	32.36	5.0	32		0	101	73-129	0			
Perfluorodecanesulfonic	Acid (PFDS)	24.35	5.0	30.8		0	79.1	53-142	0			
Perfluorodecanoic Acid	(PFDA)	26.27	5.0	32		0	82.1	71-129	0			
Perfluorododecanoic Ac	id (PFDoA)	27.39	5.0	32		0	85.6	72-134	0			
Perfluoroheptanesulfonio	c Acid (PFHpS	25.35	5.0	30.5		0	83.1	69-134	0			
Perfluoroheptanoic Acid	, ,	28.8	5.0	32		0	90	72-130	0			
Perfluorohexanesulfonic	` ' '	21.76	5.0	29.1		0	74.8	68-131	0			
Perfluorohexanoic Acid	, ,	27.38	5.0	32		0	85.6	72-129	0			
Perfluorononanesulfonio	,	26.06	5.0	30.7		0	84.9	69-127	0			
Perfluorononanoic Acid	,	25.93	5.0	32		0	81	69-130	0			
Perfluorooctanesulfonan	` ,	28.2	5.0	32		0	88.1	67-137	0			
Perfluorooctanesulfonic	, ,	24.98	2.0	29.7		0	84.1	65-140	0			
	` ,	27.46		32					_			
Perfluorooctanoic Acid (· · · · · · · · · · · · · · · · · · ·	24.17	2.0			0	85.8	71-133	0			
Perfluoropentanesulfonio	•		5.0	30		0	80.6	71-127	0			
Perfluoropentanoic Acid		28.09	5.0	32		0	87.8	72-129	0			
Perfluorotetradecanoic A	` ,	27.76	5.0	32		0	86.7	71-132	0			
Perfluorotridecanoic Acid	,	29.08	5.0	32		0	90.9	65-144	0			
Perfluoroundecanoic Ac	` ,	26.55	5.0	32		0	83	69-133	0			
N-Ethylperfluorooctanes		31.16	5.0	32		0	97.4	61-135	0			
N-Methylperfluorooctane	esulfonamidoa	29.46	5.0	32		0	92.1	65-136	0			
Hexafluoropropylene oxi	de dimer acid	31.58	5.0	32		0	98.7	70-130	0			
4,8-Dioxa-3H-perfluoron	onanoic Acid (23.78	5.0	30.1		0	79	70-130	0			
11CI-Pf3OUdS		21.21	5.0	30.1		0	70.5	70-130	0			
9CI-PF3ONS		24.32	5.0	29.8		0	81.6	70-130	0			
Surr: 13C2-FtS 4:2		175.7	0	149.4		0	118	50-150	0			
Surr: 13C2-FtS 6:2		176.5	0	152		0	116	50-150	0			
Surr: 13C2-FtS 8:2		183.8	0	153.3		0	120	50-150	0			
Surr: 13C2-PFDA		199.6	0	160		0	125	50-150	0			
Surr: 13C2-PFDoA		185.8	0	160		0	116	50-150	0			
Surr: 13C2-PFHxA		190.7	0	160		0	119	50-150	0			
Surr: 13C2-PFTeA		186	0	160		0	116	50-150	0			
Surr: 13C2-PFUnA		193.4	0	160		0	121	50-150	0			
Surr: 13C3-HFPO-DA		182.5	0	160		0	114	50-150	0			
Surr: 13C3-PFBS		186.5	0	148.8		0	125	50-150				
Surr: 13C4-PFBA		160.1	0	160		0	100	50-150				
Surr: 13C4-PFHpA		189.9	0	160		0	119	50-150				
Surr: 13C4-PFOA		204.6	0	160		0	128	50-150				
Surr: 13C4-PFOS		201.8	0	152.8		0	132	50-150				

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: 217127	Instrument ID LCMS1		Method	E537 Mod				
Surr: 13C5-PFNA	203.3	0	160	0	127	50-150	0	
Surr: 13C5-PFPeA	180	0	160	0	112	50-150	0	
Surr: 13C8-FOSA	168	0	160	0	105	50-150	0	
Surr: 1802-PFHxS	194.9	0	151.2	0	129	50-150	0	
Surr: d5-N-EtFOSAA	165.9	0	160	0	104	50-150	0	
Surr: d3-N-MeFOSAA	160.6	0	160	0	100	50-150	0	

Note:

Client: The Mannik & Smith Group, Inc.

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: 217127 Instrument ID LCMS1 Method: E537 Mod

MS	Sample ID: 2305252	27-05A MS				Units: ng/L	-	Analysi	s Date: 5/3	1/2023 08	:52 PM
Client ID:		Run ID	: LCMS1	_230531A	5	SeqNo: 961	1568	Prep Date: 5/3	0/2023	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
•											
	Iphonic Acid 4:2 (FtS	28.31	5.3	31.44	0		63-143	0			
	Iphonic Acid 6:2 (FtS	30.52	5.3	31.86	0		63-162				
	Iphonic Acid 8:2 (FtS	30.48	5.3	32.28	0		61-165				
	ulfonic Acid (PFBS)	25.74	5.3	29.76	1.182		72-130	0			
Perfluorobutanoic	, ,	32.09	5.3	33.65	4.022		73-129	0			
	sulfonic Acid (PFDS)	25.15	5.3	32.38	0		53-142				
Perfluorodecanoio	, ,	28.1	5.3	33.65	0		71-129				
	noic Acid (PFDoA)	28.6	5.3	33.65	0		72-134	0			
•	sulfonic Acid (PFHpS	22.87	5.3	32.07	0		69-134	0			
Perfluoroheptanoi	. ,	28.36	5.3	33.65	0		72-130	0			
	sulfonic Acid (PFHxS)	24.04	5.3	30.6	1.321		68-131	0			
Perfluorohexanoio	, ,	29.52	5.3	33.65	0		72-129				
	sulfonic Acid (PFNS)	25.28	5.3	32.28	0		69-127	0			
Perfluorononanoio	, ,	28.34	5.3	33.65	0		69-130	0			
Perfluorooctanesu	ulfonamide (PFOSA)	28.13	5.3	33.65	0		67-137	0			
	ulfonic Acid (PFOS)	24.38	2.1	31.23	0		65-140	0			
Perfluorooctanoic	, ,	30.28	2.1	33.65	1.459		71-133				
•	sulfonic Acid (PFPeS	24.18	5.3	31.54	0		71-127	0			
Perfluoropentanoi	` ,	28.43	5.3	33.65	0		72-129	0			
	anoic Acid (PFTeA)	27	5.3	33.65	0		71-132				
Perfluorotridecand	` ,	28.99	5.3	33.65	0		65-144	0			
	noic Acid (PFUnA)	28.84	5.3	33.65	0		69-133				
	ctanesulfonamidoace	30.88	5.3	33.65	0		61-135				
, ,	octanesulfonamidoa	30.6	5.3	33.65	0		65-136	0			
	ene oxide dimer acid	29.63	5.3	33.65	0		70-130	0			
	fluorononanoic Acid (24.73	5.3	31.65	0		70-130				
11CI-Pf3OUdS		24.02	5.3	31.65	0		70-130				
9CI-PF3ONS		25.62	5.3	31.33	0		70-130				
Surr: 13C2-FtS		160	0	157.1	0		50-150				
Surr: 13C2-FtS		156.1	0	159.8	0		50-150				
Surr: 13C2-FtS		151.4	0	161.2	0		50-150	-			
Surr: 13C2-PFI		162.5	0	168.2	0		50-150				
Surr: 13C2-PFI		165.4	0	168.2	0		50-150				
Surr: 13C2-PFI		157.9	0	168.2	0		50-150				
Surr: 13C2-PF		176.5	0	168.2	0		50-150				
Surr: 13C2-PF		167.9	0	168.2	0		50-150				
Surr: 13C3-HFI		157.8	0	168.2	0		50-150				
Surr: 13C3-PFI		162.3	0	156.5	0		50-150				
Surr: 13C4-PFI		144.5	0	168.2	0		50-150				
Surr: 13C4-PFI	•	156.2	0	168.2	0		50-150				
Surr: 13C4-PF		166.6	0	168.2	0		50-150				
Surr: 13C4-PF	os	167.3	0	160.7	0	104	50-150	0	<u> </u>		

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: 217127	Instrument ID LCMS1		Method	E537 Mod			
Surr: 13C5-PFNA	169.3	0	168.2	0	101	50-150	0
Surr: 13C5-PFPeA	147.7	0	168.2	0	87.8	50-150	0
Surr: 13C8-FOSA	157.9	0	168.2	0	93.9	50-150	0
Surr: 1802-PFHxS	174.7	0	159	0	110	50-150	0
Surr: d5-N-EtFOSAA	150.5	0	168.2	0	89.5	50-150	0
Surr: d3-N-MeFOSAA	147.8	0	168.2	0	87.9	50-150	0

Note:

See Qualifiers Page for a list of Qualifiers and their explanation.

QC Page: 14 of 35

Client: The Mannik & Smith Group, Inc.

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: 217127 Instrument ID LCMS1 Method: E537 Mod

Datem D. 217127	matidinent ib	LOMO		Wietrio	u. E337 N	nou						
DUP	Sample ID: 230525	27-03A DUP				U	Inits: ng/L		Analysis	Date: 5/31	1/2023 09	05 PM
Client ID:		Run ID	LCMS1	_230531A		Sec	qNo: 961 1	1577	Prep Date: 5/30	/2023	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Fluorotelomer Sulpho	onic Acid 4:2 (FtS	ND	5.1	0		0	0	0-0	0	0	30	
Fluorotelomer Sulpho	,	ND	5.1	0		0	0	0-0	0	0		
Fluorotelomer Sulpho	,	ND	5.1	0		0	0	0-0	0	0		
Perfluorobutanesulfo	,	0.3852	5.1	0		0	0	0-0	0	0		J
Perfluorobutanoic Ac	,	ND	5.1	0		0	0	0-0	1.722	0		
Perfluorodecanesulfo	onic Acid (PFDS)	ND	5.1	0		0	0	0-0	0	0	30	
Perfluorodecanoic Ad	` ,	ND	5.1	0		0	0	0-0	0	0	30	
Perfluorododecanoic		ND	5.1	0		0	0	0-0	0	0	30	
Perfluoroheptanesulf	onic Acid (PFHpS	ND	5.1	0		0	0	0-0	0	0	30	
Perfluoroheptanoic A		ND	5.1	0		0	0	0-0	1.174	0	30	
Perfluorohexanesulfo	` ' '	ND	5.1	0		0	0	0-0	0.6337	0	30	
Perfluorohexanoic Ad	,	1.854	5.1	0		0	0	0-0	2.09	0	30	J
Perfluorononanesulfo	onic Acid (PFNS)	ND	5.1	0		0	0	0-0	0	0	30	
Perfluorononanoic Ad	cid (PFNA)	ND	5.1	0		0	0	0-0	0	0	30	
Perfluorooctanesulfo	namide (PFOSA)	ND	5.1	0		0	0	0-0	0	0	30	
Perfluorooctanesulfo	nic Acid (PFOS)	ND	2.0	0		0	0	0-0	0.4844	0	30	
Perfluorooctanoic Ac	id (PFOA)	ND	2.0	0		0	0	0-0	0.345	0	30	
Perfluoropentanesulf	onic Acid (PFPeS	ND	5.1	0		0	0	0-0	0	0	30	
Perfluoropentanoic A	cid (PFPeA)	1.495	5.1	0		0	0	0-0	1.569	0	30	J
Perfluorotetradecano	ic Acid (PFTeA)	ND	5.1	0		0	0	0-0	0	0	30	
Perfluorotridecanoic	Acid (PFTriA)	ND	5.1	0		0	0	0-0	0	0	30	
Perfluoroundecanoic	Acid (PFUnA)	ND	5.1	0		0	0	0-0	0	0	30	
N-Ethylperfluoroocta	nesulfonamidoace	ND	5.1	0		0	0	0-0	0.4512	0	30	
N-Methylperfluorooct	anesulfonamidoa	ND	5.1	0		0	0	0-0	0.355	0	30	
Hexafluoropropylene	oxide dimer acid	ND	5.1	0		0	0	0-0	0	0	30	
4,8-Dioxa-3H-perfluo	rononanoic Acid (ND	5.1	0		0	0	0-0	0	0	30	
11CI-Pf3OUdS		ND	5.1	0		0	0	0-0	0	0	30	
9CI-PF3ONS		ND	5.1	0		0	0	0-0	0	0	30	
Surr: 13C2-FtS 4:2	2	151.8	0	152.4		0	99.6	50-150	156.4	2.99	30	
Surr: 13C2-FtS 6:2	2	165.3	0	155.1		0	107	50-150	172.9	4.5	30	
Surr: 13C2-FtS 8:2	2	153.4	0	156.4		0	98.1	50-150	165.9	7.84	30	
Surr: 13C2-PFDA		167	0	163.2	-	0	102	50-150	190	12.9	30	
Surr: 13C2-PFDoA	1	158.3	0	163.2		0	97	50-150	181.4	13.6	30	
Surr: 13C2-PFHxA	1	165.1	0	163.2	-	0	101	50-150	179.1	8.15	30	
Surr: 13C2-PFTeA	<u> </u>	176.7	0	163.2		0	108	50-150	181.5	2.68	30	<u></u>
Surr: 13C2-PFUnA	1	162.3	0	163.2		0	99.4	50-150	185.2	13.2	30	
Surr: 13C3-HFPO-	-DA	157.2	0	163.2		0	96.3	50-150	159.5	1.45	30	
Surr: 13C3-PFBS		169.3	0	151.8		0	112	50-150	175.6	3.64	30	-
Surr: 13C4-PFBA		152.8	0	163.2		0	93.6	50-150	160.5	4.95	30	
Surr: 13C4-PFHpA	1	165.4	0	163.2		0	101	50-150	175.4	5.89	30	-
Surr: 13C4-PFOA		174.5	0	163.2		0	107	50-150	180.6	3.44	30	
Surr: 13C4-PFOS		166.8	0	155.9		0	107	50-150	182.7	9.05	30	

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Instrument ID LCMS1		Method:	E537 Mod					
172.1	0	163.2	0	105	50-150	192.8	11.3	30
154.8	0	163.2	0	94.9	50-150	158.9	2.59	30
149.4	0	163.2	0	91.5	50-150	157.6	5.35	30
165.3	0	154.2	0	107	50-150	179.7	8.37	30
144.9	0	163.2	0	88.8	50-150	142.4	1.72	30
139.8	0	163.2	0	85.6	50-150	143.3	2.49	30
	172.1 154.8 149.4 165.3 144.9	172.1 0 154.8 0 149.4 0 165.3 0 144.9 0	172.1 0 163.2 154.8 0 163.2 149.4 0 163.2 165.3 0 154.2 144.9 0 163.2	172.1 0 163.2 0 154.8 0 163.2 0 149.4 0 163.2 0 165.3 0 154.2 0 144.9 0 163.2 0	172.1 0 163.2 0 105 154.8 0 163.2 0 94.9 149.4 0 163.2 0 91.5 165.3 0 154.2 0 107 144.9 0 163.2 0 88.8	172.1 0 163.2 0 105 50-150 154.8 0 163.2 0 94.9 50-150 149.4 0 163.2 0 91.5 50-150 165.3 0 154.2 0 107 50-150 144.9 0 163.2 0 88.8 50-150	172.1 0 163.2 0 105 50-150 192.8 154.8 0 163.2 0 94.9 50-150 158.9 149.4 0 163.2 0 91.5 50-150 157.6 165.3 0 154.2 0 107 50-150 179.7 144.9 0 163.2 0 88.8 50-150 142.4	172.1 0 163.2 0 105 50-150 192.8 11.3 154.8 0 163.2 0 94.9 50-150 158.9 2.59 149.4 0 163.2 0 91.5 50-150 157.6 5.35 165.3 0 154.2 0 107 50-150 179.7 8.37 144.9 0 163.2 0 88.8 50-150 142.4 1.72

The following samples were analyzed in this batch:

23052445-01E 23052445-03A 23052445-05A

QC Page: 16 of 35

Client: The Mannik & Smith Group, Inc.

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: 217229 Instrument ID SVMS8 Method: SW8270E

MBLK	Sample ID: SBL	.KW1-217229-217	229			Units: µg/L	-	Analys	is Date: 6/1	/2023 12:	57 PM
Client ID:		Run ID	: SVMS8	_230601A		SeqNo: 961	7222	Prep Date: 5/3	1/2023	DF: 1	
					SPK Ref		Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qua
1,1`-Biphenyl		ND	5.0								
2,4,5-Trichloroph	enol	ND	5.0								
2,4,6-Trichloroph	enol	ND	5.0								
2,4-Dichlorophen	ol	ND	5.0								
2,4-Dimethylpher	nol	ND	5.0								
2,4-Dinitrophenol		ND	5.0								
2,4-Dinitrotoluene	Э	ND	5.0								
2,6-Dinitrotoluene	Э	ND	5.0								
2-Chloronaphthal	lene	ND	5.0								
2-Chlorophenol		ND	5.0								
2-Methylnaphthal	lene	ND	5.0								
2-Methylphenol		ND	5.0								
2-Nitroaniline		ND	5.0								
2-Nitrophenol		ND	5.0								
3&4-Methylpheno	ol	ND	5.0								
3,3´-Dichlorobenz	zidine	ND	5.0								
3-Nitroaniline		ND	5.0								
4,6-Dinitro-2-met	hylphenol	ND	5.0								
4-Bromophenyl p	henyl ether	ND	5.0								
4-Chloro-3-methy	/lphenol	ND	5.0								
4-Chloroaniline		ND	5.0								
4-Chlorophenyl p	henyl ether	ND	5.0								
4-Nitroaniline	•	ND	5.0								
4-Nitrophenol		ND	5.0								
Acenaphthene		ND	5.0								
Acenaphthylene		ND	5.0								
Acetophenone		ND	1.0								
Anthracene		ND	5.0								
Atrazine		ND	1.0								
Benzaldehyde		ND	1.0								
Benzo(a)anthrace	ene	ND	5.0								
Benzo(a)pyrene		ND	5.0								
Benzo(b)fluoranth	hene	ND	5.0								
Benzo(g,h,i)peryl		ND	5.0								
Benzo(k)fluoranth	nene	ND	5.0								
Bis(2-chloroethox	(y)methane	ND	5.0								
Bis(2-chloroethyl))ether	ND	5.0								
Bis(2-chloroisopr	opyl)ether	ND	5.0								
Bis(2-ethylhexyl)p		ND	5.0								
Butyl benzyl phth		ND	5.0								-
Caprolactam		ND	10								
Carbazole		ND	5.0								

Work Order: 23052445

Surr: Nitrobenzene-d5

Surr: Phenol-d6

Project: Form	ner Mount Pleasant Landfill							
Batch ID: 217229	Instrument ID SVMS8		Method:	SW8270E				
Chrysene	ND	5.0						
Dibenzo(a,h)anthracene	ND	5.0						
Dibenzofuran	ND	5.0						
Diethyl phthalate	ND	5.0						
Dimethyl phthalate	ND	5.0						
Di-n-butyl phthalate	ND	5.0						
Di-n-octyl phthalate	ND	5.0						
Fluoranthene	ND	5.0						
Fluorene	ND	5.0						
Hexachlorobenzene	ND	5.0						
Hexachlorobutadiene	ND	5.0						
Hexachlorocyclopentadiene	e ND	5.0						
Hexachloroethane	ND	5.0						
Indeno(1,2,3-cd)pyrene	ND	5.0						
Isophorone	ND	5.0						
Naphthalene	ND	5.0						
Nitrobenzene	ND	5.0						
N-Nitrosodi-n-propylamine	ND	5.0						
N-Nitrosodiphenylamine	ND	5.0						
Pentachlorophenol	ND	5.0						
Phenanthrene	ND	5.0						
Phenol	ND	5.0						
Pyrene	ND	5.0						
Surr: 2,4,6-Tribromopher	nol 38.83	0	50	0	77.7	38-103	0	
Surr: 2-Fluorobiphenyl	39.34	0	50	0	78.7	36-96	0	
Surr: 2-Fluorophenol	25.28	0	50	0	50.6	20-73	0	
Surr: 4-Terphenyl-d14	61.64	0	50	0	123	44-114	0	S

43.75

16.74

0

0

50

50

0

0

87.5

33.5

33-100

10-48

0

0

Client: The Mannik & Smith Group, Inc.

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: 217229 Instrument ID SVMS8 Method: SW8270E

LCS	Sample ID: SLCSW1-21	7229-21	7229			L	Jnits: µg/L	_	Analysi	s Date: 6/1 /	/2023 01:	19 PM
Client ID:			D: SVMS8	2306014			qNo: 961 7		Prep Date: 5/3		DF: 1	
Chort ID.		Kuirit	J. U V IVI 30.	_23000 IA	0.511.5		4110. 30 1 1		·	1/2023		
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
1,1`-Biphenyl		16.56	5.0	20		0	82.8	24-111	C)		
2,4,5-Trichloropheno	ol	18.07	5.0	20		0	90.4	33-114	C)		
2,4,6-Trichloropheno	ol	16.18	5.0	20		0	80.9	36-113	C)		
2,4-Dichlorophenol		16.65	5.0	20		0	83.2	30-111	C)		
2,4-Dimethylphenol		18.37	5.0	20		0	91.8	36-109	C)		
2,4-Dinitrophenol		11.05	5.0	20		0	55.2	12-113	C)		
2,4-Dinitrotoluene		18.78	5.0	20		0	93.9	51-107	C)		
2,6-Dinitrotoluene		17.93	5.0	20		0	89.6	51-105	C)		
2-Chloronaphthalene	е	16.4	5.0	20		0	82	22-112	C)		
2-Chlorophenol		15.69	5.0	20		0	78.4	35-108	C)		
2-Methylnaphthalene	e	16.38	5.0	20		0	81.9	12-119	C)		
2-Methylphenol		14.55	5.0	20		0	72.8	31-100	C)		
2-Nitroaniline		20.15	5.0	20		0	101	46-106	C)		
2-Nitrophenol		16.92	5.0	20		0	84.6	26-111	C)		
3&4-Methylphenol		13.88	5.0	20		0	69.4	24-95	C)		
3,3´-Dichlorobenzidi	ne	15.18	5.0	20		0	75.9	48-101	C)		
3-Nitroaniline		17.55	5.0	20		0	87.8	52-105	C)		
,6-Dinitro-2-methylp	ohenol	17.8	5.0	20		0	89	28-121	C)		
I-Bromophenyl pher	nyl ether	16.55	5.0	20		0	82.8	49-107	C)		
-Chloro-3-methylph	enol	17.42	5.0	20		0	87.1	35-105	C)		
1-Chloroaniline		16.72	5.0	20		0	83.6	46-101	C)		
1-Chlorophenyl pher	nyl ether	17.16	5.0	20		0	85.8	40-107	C)		
1-Nitroaniline		17.5	5.0	20		0	87.5	49-110	C)		
1-Nitrophenol		7.38	5.0	20		0	36.9	10-64	C)		
Acenaphthene		16.58	5.0	20		0	82.9	32-108	C)		
Acenaphthylene		15.93	5.0	20		0	79.6	34-107	C			
Acetophenone		16.85	1.0	20		0	84.2	41-102	C			
Anthracene		16.76	5.0	20		0	83.8	53-105	C			
Atrazine		17.96	1.0	20		0	89.8	53-112	C			
Benzaldehyde		18.35	1.0	20		0	91.8	32-111	C			
Benzo(a)anthracene		16.39	5.0	20		0	82	57-106	C			
Benzo(a)pyrene		15.21	5.0	20		0	76	54-107	C			
Benzo(b)fluoranthen		15.58	5.0	20		0	77.9	53-109	C			
Benzo(g,h,i)perylene		16.13	5.0	20		0	80.6	50-114	C			
Benzo(k)fluoranthen		17.91	5.0	20		0	89.6	53-110	C			
Bis(2-chloroethoxy)n		18.1	5.0	20		0	90.5	42-101	C			
Bis(2-chloroethyl)eth		17.66	5.0	20		0	88.3	39-100	C			
Bis(2-chloroisopropy		14.5	5.0	20		0	72.5	31-104	C			
Bis(2-ethylhexyl)phth		16.74	5.0	20		0	83.7	53-116	C			
Butyl benzyl phthala	te	16.03	5.0	20		0	80.2	45-112	С			
Carbazole		17.36	5.0	20		0	86.8	55-106	C			
Chrysene		17.2	5.0	20		0	86	57-108	C)		

The Mannik & Smith Group, Inc.

Work Order: 23052445

Client:

Project: Former Mount Pleasant Landfill

Batch ID: 217229	Instrument ID SVMS8		Method:	SW8270E			
Dibenzo(a,h)anthracene	14.79	5.0	20	0	74	51-112	0
Dibenzofuran	16.8	5.0	20	0	84	37-107	0
Diethyl phthalate	17.66	5.0	20	0	88.3	44-114	0
Dimethyl phthalate	17.23	5.0	20	0	86.2	40-115	0
Di-n-butyl phthalate	17.3	5.0	20	0	86.5	49-112	0
Di-n-octyl phthalate	15.97	5.0	20	0	79.8	47-120	0
Fluoranthene	17.74	5.0	20	0	88.7	54-107	0
Fluorene	16.7	5.0	20	0	83.5	42-107	0
Hexachlorobenzene	16.2	5.0	20	0	81	50-105	0
Hexachlorobutadiene	17.68	5.0	20	0	88.4	10-112	0
Hexachlorocyclopentadiene	13.84	5.0	20	0	69.2	10-102	0
Hexachloroethane	16.71	5.0	20	0	83.6	10-115	0
Indeno(1,2,3-cd)pyrene	14.1	5.0	20	0	70.5	49-113	0
Isophorone	18.19	5.0	20	0	91	42-103	0
Naphthalene	15.78	5.0	20	0	78.9	18-109	0
Nitrobenzene	18.56	5.0	20	0	92.8	38-101	0
N-Nitrosodi-n-propylamine	17.99	5.0	20	0	90	40-104	0
N-Nitrosodiphenylamine	15.8	5.0	20	0	79	49-105	0
Pentachlorophenol	11.56	5.0	20	0	57.8	22-109	0
Phenanthrene	16.76	5.0	20	0	83.8	51-103	0
Phenol	7.79	5.0	20	0	39	10-63	0
Pyrene	16.07	5.0	20	0	80.4	50-105	0
Surr: 2,4,6-Tribromophen	ol 41.86	0	50	0	83.7	38-103	0
Surr: 2-Fluorobiphenyl	40.77	0	50	0	81.5	36-96	0
Surr: 2-Fluorophenol	26.35	0	50	0	52.7	20-73	0
Surr: 4-Terphenyl-d14	55.49	0	50	0	111	44-114	0
Surr: Nitrobenzene-d5	46.19	0	50	0	92.4	33-100	0
Surr: Phenol-d6	18.05	0	50	0	36.1	10- 4 8	0

Client: The Mannik & Smith Group, Inc.

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: 217229 Instrument ID SVMS8 Method: SW8270E

LCSD S	ample ID: SLCSDW1-217229-2	17220			11	nits: µg/L		Analysis	Date: 6/1/2	2023 04.4	2 DM
											2 PIVI
Client ID:	Run I	D: SVMS8	_230601A		Sec	No: 961	7224	Prep Date: 5/31	/2023	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
1,1`-Biphenyl	15.72	5.0	20		0	78.6	24-111	16.56	5.2	30	
2,4,5-Trichlorophenol	16.65	5.0	20		0	83.2	33-114	18.07	8.18	30	
2,4,6-Trichlorophenol	15.86	5.0	20		0	79.3	36-113	16.18	2	30	
2,4-Dichlorophenol	16.07	5.0	20		0	80.4	30-111	16.65	3.55	30	
2,4-Dimethylphenol	18.25	5.0	20		0	91.2	36-109	18.37	0.655	30	
2,4-Dinitrophenol	10.01	5.0	20		0	50	12-113	11.05	9.88	30	
2,4-Dinitrotoluene	17.75	5.0	20		0	88.8	51-107	18.78	5.64	30	
2,6-Dinitrotoluene	17.28	5.0	20		0	86.4	51-105	17.93	3.69	30	
2-Chloronaphthalene	15.27	5.0	20		0	76.4	22-112	16.4	7.14	30	
2-Chlorophenol	15.1	5.0	20		0	75.5	35-108	15.69	3.83	30	
2-Methylnaphthalene	15.16	5.0	20		0	75.8	12-119	16.38	7.74	30	
2-Methylphenol	14	5.0	20		0	70	31-100	14.55	3.85	30	
2-Nitroaniline	18.89	5.0	20		0	94.4	46-106	20.15	6.45	30	
2-Nitrophenol	16.48	5.0	20		0	82.4	26-111	16.92	2.63	30	
3&4-Methylphenol	13.02	5.0	20		0	65.1	24-95	13.88	6.39	30	
3,3´-Dichlorobenzidine	13.95	5.0	20		0	69.8	48-101	15.18	8.44	30	
3-Nitroaniline	16.93	5.0	20		0	84.6	52-105	17.55	3.6	30	
1,6-Dinitro-2-methylphe	nol 17.57	5.0	20		0	87.8	28-121	17.8	1.3	30	
1-Bromophenyl phenyl e	ether 16	5.0	20		0	80	49-107	16.55	3.38	30	
1-Chloro-3-methylpheno		5.0	20		0	82.6	35-105	17.42	5.36	30	
I-Chloroaniline	16.77	5.0	20		0	83.8	46-101	16.72	0.299	30	
1-Chlorophenyl phenyl e	ether 15.94	5.0	20		0	79.7	40-107	17.16	7.37	30	
1-Nitroaniline	15.7	5.0	20		0	78.5	49-110	17.5	10.8	30	
1-Nitrophenol	6.32	5.0	20		0	31.6	10-64	7.38	15.5	30	
Acenaphthene	15.88	5.0	20		0	79.4	32-108	16.58	4.31	30	
Acenaphthylene	14.82	5.0	20		0	74.1	34-107	15.93	7.22	30	
Acetophenone	15.67	1.0	20		0	78.4	41-102	16.85	7.26	30	
Anthracene	16.03	5.0	20		0	80.2	53-105	16.76	4.45	30	
Atrazine	17.36	1.0	20		0	86.8	53-112	17.96	3.4	30	
Benzaldehyde	15.83	1.0	20		0	79.2	32-111	18.35	14.7	30	
Benzo(a)anthracene	16.2	5.0	20		0	81	57-106	16.39	1.17	30	
Benzo(a)pyrene	15.07	5.0	20		0	75.4	54-107	15.21	0.925	30	
Benzo(b)fluoranthene	14.7	5.0	20		0	73.5	53-109	15.58	5.81	30	
Benzo(g,h,i)perylene	15.62	5.0	20		0	78.1	50-114		3.21	30	
Benzo(k)fluoranthene	18.23	5.0	20		0	91.2	53-110	17.91	1.77	30	
Bis(2-chloroethoxy)meth		5.0	20		0	85.8	42-101	18.1	5.39	30	
Bis(2-chloroethyl)ether	16.58	5.0	20		0	82.9	39-100	17.66	6.31	30	
Bis(2-chloroisopropyl)et		5.0	20		0	68.8	31-104	14.5	5.24	30	
Bis(2-ethylhexyl)phthala		5.0	20		0	83.6	53-116	16.74	0.179	30	
Butyl benzyl phthalate	16.51	5.0	20		0	82.6	45-112		2.95	30	
Carbazole	16.3	5.0	20		0	81.5	55-106	17.36	6.3	30	
Chrysene	16.71	5.0	20		0	83.6	57-108	17.2	2.89	30	

Work Order: 23052445

Project: Former Mount Pleasant Landfill

QC BATCH REPORT

Batch ID: 217229	Instrument ID SVMS8		Method:	SW8270E						
Dibenzo(a,h)anthracene	14.16	5.0	20	0	70.8	51-112	14.79	4.35	30	
Dibenzofuran	15.8	5.0	20	0	79	37-107	16.8	6.13	30	
Diethyl phthalate	17.25	5.0	20	0	86.2	44-114	17.66	2.35	30	
Dimethyl phthalate	16.77	5.0	20	0	83.8	40-115	17.23	2.71	30	
Di-n-butyl phthalate	17.21	5.0	20	0	86	49-112	17.3	0.522	30	
Di-n-octyl phthalate	15.54	5.0	20	0	77.7	47-120	15.97	2.73	30	
Fluoranthene	16.69	5.0	20	0	83.4	54-107	17.74	6.1	30	
Fluorene	15.9	5.0	20	0	79.5	42-107	16.7	4.91	30	
Hexachlorobenzene	15.71	5.0	20	0	78.6	50-105	16.2	3.07	30	
Hexachlorobutadiene	14.53	5.0	20	0	72.6	10-112	17.68	19.6	30	
Hexachlorocyclopentadiene	13.36	5.0	20	0	66.8	10-102	13.84	3.53	30	
Hexachloroethane	13.2	5.0	20	0	66	10-115	16.71	23.5	30	
Indeno(1,2,3-cd)pyrene	13.63	5.0	20	0	68.2	49-113	14.1	3.39	30	
Isophorone	17.58	5.0	20	0	87.9	42-103	18.19	3.41	30	
Naphthalene	14.2	5.0	20	0	71	18-109	15.78	10.5	30	
Nitrobenzene	17.22	5.0	20	0	86.1	38-101	18.56	7.49	30	
N-Nitrosodi-n-propylamine	17.34	5.0	20	0	86.7	40-104	17.99	3.68	30	
N-Nitrosodiphenylamine	15.25	5.0	20	0	76.2	49-105	15.8	3.54	30	
Pentachlorophenol	10.54	5.0	20	0	52.7	22-109	11.56	9.23	30	
Phenanthrene	16.18	5.0	20	0	80.9	51-103	16.76	3.52	30	
Phenol	7.25	5.0	20	0	36.2	10-63	7.79	7.18	30	
Pyrene	16.32	5.0	20	0	81.6	50-105	16.07	1.54	30	
Surr: 2,4,6-Tribromopher	nol 40.54	0	50	0	81.1	38-103	41.86	3.2	40	
Surr: 2-Fluorobiphenyl	38.06	0	50	0	76.1	36-96	40.77	6.88	40	
Surr: 2-Fluorophenol	24.43	0	50	0	48.9	20-73	26.35	7.56	40	
Surr: 4-Terphenyl-d14	57.22	0	50	0	114	44-114	55.49	3.07	40	S
Surr: Nitrobenzene-d5	42.03	0	50	0	84.1	33-100	46.19	9.43	40	
Surr: Phenol-d6	16.69	0	50	0	33.4	10-48	18.05	7.83	40	

The following samples were analyzed in this batch:

23052445-01B

Client: The Mannik & Smith Group, Inc.

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: R372023a Instrument ID VMS11 Method: SW8260D

	modument o VIVIC										
MBLK	Sample ID: 11V-BLKW3	3-230526-	R372023a	l		Units: µg/L	-	Analysi	s Date: 5/2	7/2023 08	:53 AM
Client ID:		Run ID	: VMS11	_230526B		SeqNo: 9602	2645	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
1,1,1-Trichloroethane		ND	1.0								
1,1,2,2-Tetrachloroeth	ane	ND	1.0								
1,1,2-Trichloroethane		ND	1.0								
1,1,2-Trichlorotrifluoro	ethane	ND	1.0								
1,1-Dichloroethane		ND	1.0								
1,1-Dichloroethene		ND	1.0								
1,2,4-Trichlorobenzen	е	ND	1.0								
1,2-Dibromo-3-chlorop		ND	1.0								
1,2-Dibromoethane		ND	1.0								
1,2-Dichlorobenzene		ND	1.0								
1,2-Dichloroethane		ND	1.0								
1,2-Dichloropropane		ND	1.0								
1,3-Dichlorobenzene		ND	1.0								
1,4-Dichlorobenzene		ND	1.0								
2-Butanone		ND	5.0								
2-Hexanone		ND	5.0								
4-Methyl-2-pentanone		ND	1.0								
Acetone		ND	10								
Benzene		ND	1.0								
Bromodichloromethan	e	ND	1.0								
Bromoform		ND	1.0								
Bromomethane		ND	1.0								
Carbon disulfide		ND	1.0								
Carbon tetrachloride		ND	1.0								
Chlorobenzene		ND	1.0								
Chloroethane		ND	1.0								
Chloroform		ND	1.0								
Chloromethane		ND	1.0								
cis-1,2-Dichloroethene	e	ND	1.0								
cis-1,3-Dichloroproper	ne	ND	1.0								
Cyclohexane		ND	2.0								
Dibromochloromethan	e	ND	1.0						_		
Dichlorodifluorometha	ne	ND	1.0								
Ethylbenzene		ND	1.0								
Isopropylbenzene		ND	1.0								
Methyl acetate		ND	2.0								
Methyl tert-butyl ether		ND	1.0								
Methylcyclohexane		ND	1.0								
Methylene chloride		ND	5.0								
Styrene		ND	1.0								
Tetrachloroethene		ND	1.0								
Toluene		ND	1.0								

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: R372023a	Instrument ID VMS11		Method:	SW8260D				
trans-1,2-Dichloroethene	ND	1.0						
trans-1,3-Dichloropropene	ND	1.0						
Trichloroethene	ND	1.0						
Trichlorofluoromethane	ND	1.0						
Vinyl chloride	ND	1.0						
Xylenes, Total	ND	3.0						
Surr: 1,2-Dichloroethane-	-d4 20.49	0	20	0	102	80-120	0	
Surr: 4-Bromofluorobenze	ene 19.14	0	20	0	95.7	80-120	0	
Surr: Dibromofluorometha	ane 19.13	0	20	0	95.6	80-120	0	
Surr: Toluene-d8	19.39	0	20	0	97	80-120	0	

Client: The Mannik & Smith Group, Inc.

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: R372023a Instrument ID VMS11 Method: SW8260D

LCS Sampl	e ID: 11V-LCSW3-230526-	R372023a	1		U	nits: µg/L		Analysi	s Date: 5/2	7/2023 07	:47 AM
Client ID:	Run I	Run ID: VMS11_230526B			SeqNo: 9602643			Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
1,1,1-Trichloroethane	18.51	1.0	20		0	92.6	75-119	()		
1,1,2,2-Tetrachloroethane	20.11	1.0	20		0	101	80-123	(
1,1,2-Trichloroethane	19.73	1.0	20		0	98.6	83-118				
1,1,2-Trichlorotrifluoroethane	19.58	1.0	20		0	97.9	64-133	C)		
1,1-Dichloroethane	20.67	1.0	20		0	103	73-122	C			
1,1-Dichloroethene	22.48	1.0	20		0	112	66-131	C			
1,2,4-Trichlorobenzene	20.63	1.0	20		0	103	73-127	(
,2-Dibromo-3-chloropropane	18.07	1.0	20		0	90.4	52-141	C)		
,2-Dibromoethane	18.23	1.0	20		0	91.2	60-159	C			
,2-Dichlorobenzene	19.18	1.0	20		0	95.9	80-119	C			
1,2-Dichloroethane	19.66	1.0	20		0	98.3	78-121	C			
,2-Dichloropropane	19.34	1.0	20		0	96.7	78-120	C)		
1,3-Dichlorobenzene	19.27	1.0	20		0	96.4	80-120	()		
,4-Dichlorobenzene	19.73	1.0	20		0	98.6	81-119	C			
2-Butanone	15.47	5.0	20		0	77.4	69-147	C)		
-Hexanone	15.83	5.0	20		0	79.2	67-140	C			
-Methyl-2-pentanone	20.33	1.0	20		0	102	68-199	(
cetone	16.76	10	20		0	83.8	70-166	C)		
Benzene	19.68	1.0	20		0	98.4	78-120	C)		
Bromodichloromethane	20.26	1.0	20		0	101	73-126	C			
Bromoform	18.19	1.0	20		0	91	60-124	()		
Bromomethane	23.99	1.0	20		0	120	20-183	C)		
Carbon disulfide	22.15	1.0	20		0	111	67-159	()		
Carbon tetrachloride	19.51	1.0	20		0	97.6	69-124	C)		
Chlorobenzene	18.85	1.0	20		0	94.2	80-118	C)		
Chloroethane	18.71	1.0	20		0	93.6	35-136	C)		
Chloroform	20.31	1.0	20		0	102	75-119	(
Chloromethane	16.77	1.0	20		0	83.8	26-117	C)		
cis-1,2-Dichloroethene	21.04	1.0	20		0	105	75-123	()		
is-1,3-Dichloropropene	18.67	1.0	20		0	93.4	69-120	C)		
Cyclohexane	20.31	2.0	20		0	102	66-128	()		
Dibromochloromethane	17.34	1.0	20		0	86.7	63-117	C)		
Dichlorodifluoromethane	16.87	1.0	20		0	84.4	36-133	(
Ethylbenzene	18.82	1.0	20		0	94.1	76-116	(
sopropylbenzene	20.09	1.0	20		0	100	77-118	(
Methyl tert-butyl ether	20.44	1.0	20		0	102	77-137	(
Methylcyclohexane	19.82	1.0	20		0	99.1	66-125	(
Methylene chloride	19.92	5.0	20		0	99.6	68-125	()		
Styrene	20.09	1.0	20		0	100	76-123				
Tetrachloroethene	18.76	1.0	20		0	93.8	80-124	(
Toluene	18.78	1.0	20		0	93.9	78-116	(
rans-1,2-Dichloroethene	21.23	1.0	20		0	106	73-124	(

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: R372023a Instr	rument ID VMS11		Method:	SW8260D			
trans-1,3-Dichloropropene	18.97	1.0	20	0	94.8	67-118	0
Trichloroethene	18.49	1.0	20	0	92.4	75-122	0
Trichlorofluoromethane	17.61	1.0	20	0	88	52-115	0
Vinyl chloride	16.97	1.0	20	0	84.8	49-122	0
Xylenes, Total	58.08	3.0	60	0	96.8	77-119	0
Surr: 1,2-Dichloroethane-d4	19.82	0	20	0	99.1	80-120	0
Surr: 4-Bromofluorobenzene	20.13	0	20	0	101	80-120	0
Surr: Dibromofluoromethane	19.26	0	20	0	96.3	80-120	0
Surr: Toluene-d8	19.98	0	20	0	99.9	80-120	0

The following samples were analyzed in this batch:

23052445-01A 23052445-04A

Client: The Mannik & Smith Group, Inc.

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: R372072c Instrument ID VMS12 Method: SW8260D

MBLK S	ample ID: 12V-BLKW1-	·230530-F	R372072c	;		Units: µg/L	-	Analysis Date: 5/31/2023 12:26			
Client ID:		Run ID: VMS12_230530A				SeqNo: 9605590		Prep Date:		DF: 1	
				-	CDK D-f	•				RPD	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	Limit	Qua
-inalyte			I QL	Oi it vai		/01CLC			701K1 D		Quo
1,1,1-Trichloroethane		ND	1.0								
1,1,2,2-Tetrachloroetha	ne	ND	1.0								
1,1,2-Trichloroethane		ND	1.0								
1,1,2-Trichlorotrifluoroet	hane	ND	1.0								
1,1-Dichloroethane		ND	1.0								
1,1-Dichloroethene		ND	1.0								
1,2,4-Trichlorobenzene		ND	1.0								
1,2-Dibromo-3-chloropro	ppane	ND	1.0								
1,2-Dibromoethane		ND	1.0								
1,2-Dichlorobenzene		ND	1.0								
1,2-Dichloroethane		ND	1.0								
1,2-Dichloropropane		ND	1.0								
1,3-Dichlorobenzene		ND	1.0								
1,4-Dichlorobenzene		ND	1.0								
2-Butanone		ND	5.0								
2-Hexanone		ND	5.0								
4-Methyl-2-pentanone		ND	1.0								
Acetone		ND	10								
Benzene		ND	1.0								
Bromodichloromethane		ND	1.0								
Bromoform		ND	1.0								
Bromomethane		ND	1.0								
Carbon disulfide		ND	1.0								
Carbon tetrachloride		ND	1.0								
Chlorobenzene		ND	1.0								
Chloroethane		ND	1.0								
Chloroform		ND ND	1.0								
Chloromethane		ND ND	1.0								
cis-1,2-Dichloroethene		ND	1.0								
cis-1,3-Dichloropropene		ND	1.0 2.0								
Cyclohexane Dibromochloromethane		ND	1.0								
Dibromochloromethane Dichlorodifluoromethane	<u>.</u>	ND	1.0								
Ethylbenzene	•	ND	1.0								
Isopropylbenzene		ND	1.0								
Methyl acetate		ND	2.0								
Methyl tert-butyl ether		ND	1.0								
Methylcyclohexane		ND	1.0								
Methylene chloride		ND	5.0								
Styrene		ND	1.0								
Tetrachloroethene		ND	1.0								
i cu acinolocuidile		ייי	1.0								

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: R372072c	Instrument ID VMS12		Method:	SW8260D				
trans-1,2-Dichloroethene	ND	1.0						
trans-1,3-Dichloropropene	ND	1.0						
Trichloroethene	ND	1.0						
Trichlorofluoromethane	ND	1.0						
Vinyl chloride	ND	1.0						
Xylenes, Total	ND	3.0						
Surr: 1,2-Dichloroethane-	d4 19.88	0	20	0	99.4	80-120	0	
Surr: 4-Bromofluorobenze	ene 19.56	0	20	0	97.8	80-120	0	
Surr: Dibromofluorometha	ane 19.1	0	20	0	95.5	80-120	0	
Surr: Toluene-d8	20.06	0	20	0	100	80-120	0	

Client: The Mannik & Smith Group, Inc.

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: R372072c Instrument ID VMS12 Method: SW8260D

LCS	Sample ID: 12V-L	.CSW1-230530-I	R372072			Units: µg/L			Analysi	0/2023 11:12 PM		
Client ID:		Run ID	: VMS12	_230530A		SeqNo: 9605588			Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
1,1,1-Trichloroethan	ie.	19.47	1.0	20		0	97.4	75-119	()		
1,1,2,2-Tetrachloroe		18.82	1.0	20		0	94.1	80-123	(
1,1,2-Trichloroethan		19.99	1.0	20		0	100	83-118	(
1,1,2-Trichlorotrifluo		20.22	1.0	20		0	101	64-133	(
1,1-Dichloroethane	rootriario	21.34	1.0	20		0	107	73-122	(
1,1-Dichloroethene		20.99	1.0	20		0	105	66-131	(
1,2,4-Trichlorobenze	ene	20.26	1.0	20		0	101	73-127				
,2-Dibromo-3-chlor		18.16	1.0	20		0	90.8	52-141	(
1,2-Dibromoethane		20.4	1.0	20		0	102	60-159	(
1,2-Dichlorobenzene	Э	20.19	1.0	20		0	101	80-119	(
1,2-Dichloroethane	-	19.94	1.0	20		0	99.7	78-121				
1,2-Dichloropropane)	20.41	1.0	20		0	102	78-120	(
1,3-Dichlorobenzene		20.47	1.0	20		0	102	80-120	(
1,4-Dichlorobenzene		20.77	1.0	20		0	104	81-119	C			
2-Butanone		20.28	5.0	20		0	101	69-147	(
2-Hexanone		22.17	5.0	20		0	111	67-140	(
I-Methyl-2-pentanor	ne	26.19	1.0	20		0	131	68-199				
Acetone		20.95	10	20		0	105	70-166	(
Benzene		21.37	1.0	20		0	107	78-120	(
Bromodichlorometha	ane	21.66	1.0	20		0	108	73-126	(
Bromoform		18.28	1.0	20		0	91.4	60-124				
Bromomethane		25.33	1.0	20		0	127	20-183	(
Carbon disulfide		22.72	1.0	20		0	114	67-159	(
Carbon tetrachloride	<u> </u>	19.15	1.0	20		0	95.8	69-124	(
Chlorobenzene		20.61	1.0	20		0	103	80-118	(
Chloroethane		20.59	1.0	20		0	103	35-136	(
Chloroform		21.33	1.0	20		0	107	75-119	(
Chloromethane		17.17	1.0	20		0	85.8	26-117	(
cis-1,2-Dichloroethe	ne	21.78	1.0	20		0	109	75-123				
cis-1,3-Dichloroprop		20.48	1.0	20		0	102	69-120	(
Cyclohexane		19.29	2.0	20		0	96.4	66-128	C			
Dibromochlorometha	ane	18.05	1.0	20		0	90.2	63-117	C)		
Dichlorodifluorometh		21.78	1.0	20		0	109	36-133	(
Ethylbenzene		20.94	1.0	20		0	105	76-116	(
sopropylbenzene		20.02	1.0	20		0	100	77-118	(
Methyl tert-butyl eth	er	23.17	1.0	20		0	116	77-137	(
Methylcyclohexane	-	19.37	1.0	20		0	96.8	66-125	(
Methylene chloride		22.16	5.0	20		0	111	68-125	(
Styrene		20.11	1.0	20		0	101	76-123	(
Tetrachloroethene		19.59	1.0	20		0	98	80-124	(
Toluene		21.26	1.0	20		0	106	78-116	(
trans-1,2-Dichloroet	hene	21.28	1.0	20		0	106	73-124	(

Client: The Mannik & Smith Group, Inc.

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: R372072c In	nstrument ID VMS12		Method:	SW8260D			
trans-1,3-Dichloropropene	20.13	1.0	20	0	101	67-118	0
Trichloroethene	20.07	1.0	20	0	100	75-122	0
Trichlorofluoromethane	18.94	1.0	20	0	94.7	52-115	0
Vinyl chloride	19.54	1.0	20	0	97.7	49-122	0
Xylenes, Total	63.08	3.0	60	0	105	77-119	0
Surr: 1,2-Dichloroethane-d-	20.18	0	20	0	101	80-120	0
Surr: 4-Bromofluorobenzen	e 20.25	0	20	0	101	80-120	0
Surr: Dibromofluoromethan	e 20.63	0	20	0	103	80-120	0
Surr: Toluene-d8	19.45	0	20	0	97.2	80-120	0

QC BATCH REPORT

QC BATCH REPORT

Client: The Mannik & Smith Group, Inc.

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: R372072c Instrument ID VMS12 Method: SW8260D

MS Sa	ample ID: 23051974-23C MS				Unit	ts: µg/L		Analys	is Date: 5/3	1/2023 08	:40 AM
Client ID:	Run	ID: VMS12	_230530A		SeqN	lo: 960 5	610	Prep Date:		DF: 10)
				SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value	9	%REC	Limit	Value	%RPD	Limit	Qua
1,1,1-Trichloroethane	193.6	10	200		0	96.8	75-119		0		
1,1,2,2-Tetrachloroethan	ie 170.5	10	200		0	85.2	80-123		0		
1,1,2-Trichloroethane	193.5	10	200		0	96.8	83-118		0		
1,1,2-Trichlorotrifluoroeth	nane 198.6	10	200		0	99.3	64-133		0		
1,1-Dichloroethane	204.5	10	200		0	102	73-122		0		
1,1-Dichloroethene	217.8	10	200		0	109	66-131		0		
1,2,4-Trichlorobenzene	160	10	200		0	80	73-127		0		
1,2-Dibromo-3-chloropro	pane 145.2	10	200		0	72.6	52-141		0		
1,2-Dibromoethane	189.1	10	200		0	94.6	60-159		0		
1,2-Dichlorobenzene	191	10	200		0	95.5	80-119		0		
1,2-Dichloroethane	192	10	200		0	96	78-121		0		
1,2-Dichloropropane	198.6	10	200		0	99.3	78-120		0		
1,3-Dichlorobenzene	193.2	10	200		0	96.6	80-120		0		
1,4-Dichlorobenzene	195.5	10	200		0	97.8	81-119		0		
2-Butanone	183.6	50	200		0	91.8	69-147		0		
2-Hexanone	199.8	50	200		0	99.9	67-140		0		
4-Methyl-2-pentanone	248.5	10	200		0	124	68-199		0		
Acetone	203.9	100	200	6	.8	98.6	70-166		0		
Benzene	214.2	10	200	8	.8	103	78-120		0		
Bromodichloromethane	196.3	10	200		0	98.2	73-126		0		
Bromoform	153.8	10	200		0	76.9	60-124		0		
Bromomethane	157.8	10	200		0	78.9	20-183		0		
Carbon disulfide	210.9	10	200		0	105	67-159		0		
Carbon tetrachloride	187.8	10	200		0	93.9	69-124		0		
Chlorobenzene	201.7	10	200		0	101	80-118		0		
Chloroethane	200.5	10	200		0	100	35-136		0		
Chloroform	199.4	10	200		0	99.7	75-119		0		
Chloromethane	174.2	10	200		0	87.1	26-117		0		
cis-1,2-Dichloroethene	195.8	10	200		0	97.9	75-123		0		
cis-1,3-Dichloropropene	175.2	10	200		0	87.6	69-120		0		
Cyclohexane	216	20	200		0	108	66-128		0		
Dibromochloromethane	157.5	10	200		0	78.8	63-117		0		
Dichlorodifluoromethane		10	200		0	112	36-133		0		
Ethylbenzene	215.2	10	200	2	.8	106	76-116		0		
Isopropylbenzene	213.1	10	200	5	.2	104	77-118		0		
Methyl tert-butyl ether	217.1	10	200	6	.7	105	77-137		0		
Methylcyclohexane	205.8	10	200		0	103	66-125		0		
Methylene chloride	208.7	50	200		0	104	68-125		0		
Styrene	198.9	10	200		0	99.4	76-123		0		
Tetrachloroethene	196.9	10	200		0	98.4	80-124		0		
Toluene	212.3	10	200	13	.4	99.4	78-116		0		
trans-1,2-Dichloroethene	207.7	10	200		0	104	73-124		0		

Client: The Mannik & Smith Group, Inc.

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: R372072c	Instrument ID VMS12		Method:	SW8260D			
trans-1,3-Dichloropropene	168.1	10	200	0	84	67-118	0
Trichloroethene	196.9	10	200	0	98.4	75-122	0
Trichlorofluoromethane	192.1	10	200	0	96	52-115	0
Vinyl chloride	201.6	10	200	0	101	49-122	0
Xylenes, Total	639.4	30	600	0	107	77-119	0
Surr: 1,2-Dichloroethane-	d4 199.2	0	200	0	99.6	80-120	0
Surr: 4-Bromofluorobenze	ene 203.4	0	200	0	102	80-120	0
Surr: Dibromofluorometha	ane 197	0	200	0	98.5	80-120	0
Surr: Toluene-d8	196.5	0	200	0	98.2	80-120	0

Note:

See Qualifiers Page for a list of Qualifiers and their explanation.

QC BATCH REPORT

QC BATCH REPORT

Client: The Mannik & Smith Group, Inc.

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: R372072c Instrument ID VMS12 Method: SW8260D

MSD	Sample ID: 2305	51974-23C MSD				Units: μο	Date: 5/31	/31/2023 09:04 AM			
Client ID:		Run ID	: VMS12	_230530A		SeqNo: 96	05611	Prep Date:		DF: 10	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%RE0	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
1,1,1-Trichloroet	thane	193.6	10	200		0 96.8	75-119	193.6	0	30	
1,1,2,2-Tetrachlo		177	10	200		0 88.5			3.74	30	
1,1,2,Z-Tetracriic		195.8	10	200		0 97.9			1.18	30	
1,1,2-Trichloroet 1,1,2-Trichlorotri		198.2	10	200		0 99.1	64-133		0.202	30	
1,1-Dichloroetha		200	10	200		0 100			2.22	30	
1,1-Dichloroethe		214.9	10	200		0 100	66-131	217.8	1.34	30	
1,2,4-Trichlorobe		161	10	200		0 80.5			0.623	30	
1,2-Dibromo-3-c		138.6	10	200		0 69.3		145.2	4.65	30	
1,2-Dibromoetha		190.8	10	200		0 95.4			0.895	30	
1,2-Dichlorobena		189.9	10	200		0 95			0.578	30	
1,2-Dichlorobena		191.9	10	200		0 96		191	0.0521	30	
1,2-Dichloroprop		200.1	10	200		0 100			0.0321	30	
1.3-Dichlorobena		192.2	10	200		0 96.1	80-120		0.732	30	
1,4-Dichlorobenz		192	10	200		0 96			1.81	30	
2-Butanone	20110	179.9	50	200		0 90			2.04	30	
2-Hexanone		197.2	50	200		0 98.6			1.31	30	
-Methyl-2-penta	anone	252.4	10	200		0 126			1.56	30	
Acetone	anone	201.9	100	200	6.				0.986	30	
Benzene		210.2	10	200	8.		78-120		1.89	30	
Bromodichlorom	ethane	204	10	200		0 102			3.85	30	
Bromoform	ioti iario	160.2	10	200		0 80.1	60-124		4.08	30	
Bromomethane		202.8	10	200		0 101	20-183		25	30	
Carbon disulfide		218	10	200		0 109			3.31	30	
Carbon tetrachlo		189.7	10	200		0 94.8			1.01	30	
Chlorobenzene	nide	202.3	10	200		0 101	80-118		0.297	30	
Chloroethane		205.2	10	200		0 103		_	2.32	30	
Chloroform		199.9	10	200		0 100			0.25	30	
Chloromethane		165.4	10	200		0 82.7	26-117		5.18	30	
cis-1,2-Dichloroe	ethene	194.4	10	200		0 97.2			0.718	30	
cis-1,3-Dichloror		172.1	10	200		0 86			1.79	30	
Cyclohexane		211.7	20	200		0 106			2.01	30	
Dibromochlorom	nethane	164.1	10	200		0 82			4.1	30	
Dichlorodifluoror		203.2	10	200		0 102			9.29		
Ethylbenzene		211.9	10	200	2.				1.55		
sopropylbenzen	ne	211.4	10	200		.2 103			0.801	30	
		219.4	10	200	6.				1.05		
Methylcyclohexa	ethyl tert-butyl ether		10	200		0 99.6			3.21	30	
Methylene chlori		199.3 208.1	50	200		0 104			0.288		
Styrene		199.2	10	200		0 99.6			0.255	30	
Styrene Fetrachloroether	ne	196.9	10	200		0 98.4			0.131		
Toluene		212.2	10	200	13.				0.0471	30	
rans-1,2-Dichlor	roothono	209	10	200		0 104			0.624		

Client: The Mannik & Smith Group, Inc.

Work Order: 23052445

Project: Former Mount Pleasant Landfill

Batch ID: R372072c	Instrument ID VMS12		Method:	SW8260D						
trans-1,3-Dichloropropene	172.2	10	200	0	86.1	67-118	168.1	2.41	30	
Trichloroethene	194.5	10	200	0	97.2	75-122	196.9	1.23	30	
Trichlorofluoromethane	191.7	10	200	0	95.8	52-115	192.1	0.208	30	
Vinyl chloride	196.3	10	200	0	98.2	49-122	201.6	2.66	30	
Xylenes, Total	632	30	600	0	105	77-119	639.4	1.16	30	
Surr: 1,2-Dichloroethane-	d4 195.7	0	200	0	97.8	80-120	199.2	1.77	30	
Surr: 4-Bromofluorobenze	ene 204.3	0	200	0	102	80-120	203.4	0.442	30	
Surr: Dibromofluorometha	ane 195.7	0	200	0	97.8	80-120	197	0.662	30	
Surr: Toluene-d8	198.7	0	200	0	99.4	80-120	196.5	1.11	30	

The following samples were analyzed in this batch:

23052445-04A

QC BATCH REPORT

Client: The Mannik & Smith Group, Inc.

Work Order: 23052445

Project: Former Mount Pleasant Landfill

QC BATCH REPORT

_	SPK Ref		Analysis Prep Date: RPD Ref Value	Date: 5/31 %RPD	/2023 12:3 DF: 1 RPD	33 PM
S PK Val	SPK Ref Val Value %REC	Control	RPD Ref	%RPD		
PK Val	Val Value %REC			%RPD	RPD	
230531B	Units: ma				Limit	Qua
230531B	Units: ma l					
230531B		NH3-N/L	Analysis	Date: 5/31	/2023 12:	34 PM
	0531B SeqNo: 9607	7779	Prep Date:		DF: 1	
_	SPK Ref Val Value %REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
1	1 0 108	90-110	0			
	Units: mg I	NH3-N/L	Analysis	Date: 5/31	/2023 12:4	44 PN
230531B	0531B SeqNo: 9607	7787	Prep Date:		DF: 1	
_	SPK Ref Val Value %REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
1	1 0.02278 94.4	90-110	0			
	Units: mg I	NH3-N/L	Analysis	Date: 5/31	/2023 12:	54 PM
230531B	0531B SeqNo: 9607	7795	Prep Date:		DF: 1	
_	SPK Ref Val Value %REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
1	1 0.02706 82	90-110	0			s
	Units: mg I	NH3-N/L	Analysis	Date: 5/31	/2023 12:4	45 PM
230531B	0531B SeqNo: 9607	7788	Prep Date:		DF: 1	
_	SPK Ref Val Value %REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
	1 0.02278 94.1	90-110	0.9666	0.259	20	
1	Units: mg I	NH3-N/L	Analysis	Date: 5/31	/2023 12:	55 PM
1	0531B SeqNo: 9607	7796	Prep Date:		DF: 1	
1 _230531B	0531B Seq100. 9607		RPD Ref	%RPD	RPD Limit	Qua
230531B S	SPK Ref	Control Limit	Value			S
			\/2 110 0/DEO 1 IMIT	PK Val value %REC Lillin value	K Val Value %REC LITTIL VALUE %RPD	1 0.02706 82.4 90-110 0.8472 0.401 20

Chain of Custody Form

ALS Group USA, Corp

	Work Order	
-		

Company Name	· The Mannik & Smith Group, Inc.	Purchase Order					Parameter/Method Request for Analysis						
, , , , , , , , , , , , , , , , , , , ,		Company Name	The Mannik &	Smith Group, Inc.		. /	۸٠.	VOC				. 4-4-4	
Send Report To	D.ADLER_	Invoice Attn	Accounts Paya	able		-	ġ	SVOC					
Project Name	FORMER MT. PLEASANT LANDFIL	Project #	M 34	160004		_	ĵ. /	PAR	c				
) .	DISSOLVED MEMIS - 10 MICH + AL, Sh, Be, B, NI,				ALSA BE BANG	
Address .	2365 Haggerty Road South Suite 100	Address:	2365 Haggerty	Road South Suite	100 Suite 100	The same of	-1	11.010	1010/	7			
Çity State Zip	Canton, MI 48188	of total the						PFAS	5 - SE	E ATT	Ache	O EGLE	45T For GROWN
Phone	7343973100	City State Zip	Canton, MI 48188			·Ġ							b, Be, B, Ni, TH
FIGHE	DADLER & MANNIK SM 1374	Phone:	7343973100			`. I .						-	, ,
∋-Mail Address	GROUP. COM	e-Mail Address				() r							
# :::::::::::::::::::::::::::::::::::::	Sample Description	Date	Time	Matrix	Preservative	-	-	a Lin I	21.5	Terrer	(A)Fix	1-1-1-1	41.4.2.4.3.4.4.3.4.4.3.4.4.4.
1		Dute		CROVNO_		# Bottle	s	AB	C D	E:F	G H	1; 1	Sample Notes
' /	1W-300		1400	WATER		12	-/	X(X)	X	XX	X		
2			1	1			Î						
3 M	W-300F					1	1		V		+	\vdash	
	W-300P					7	+	++	1		+	-	
	11-3001			V		3	1						
5 TA	RIP BLANK		V	WATER		2		$X \mid I$					
6 F	ELD BLANK		1400	WATER		2	T	1		M			
7			,,-0				+	++	+	H	+	\vdash	
8	23052445				1		+	+			+		
9	MANNIK&SMITH: The Mannik & Smith Group, Inc.	-			-		+	+			+		
	Project: Former Mount Pleasant Landfill												
10													
lotes: /	J-HGL - 2-HNO3 - 3-HZSD4 - 4-NaOn - 3-HGL	The state of the s				to ALS Environmental. Required Turnaround it is '.8-4'degrees.C.'.9-5035.'				NDARD		241-	Results Due: STANDARD
elinquised by	Date: Time:	Receiv		rees.C .9-5035	Date: : : : :		200	-	TES:		K days _	24 []]	TURNAROUND
1111	1				ill t			1.0	. 20.				
IN.	5-25-2023 08.2	19	01/10		5/25/25	O6.				QC Repo	orting 1	evel: (cl	heck:box below):
2mg	5/25/25 1900		W		5/25/25	170	0-		_ Level	II: Standard		-	Other:
	Q5 5/25/23 223	0	12	2	5/25/23	223	30		Level	III: Std QC +	Raw dat	a	DFZ
Page 1 of 1	ALS Group US	SA, Corp 3352 128th A	ve Holland M	ichigan 49424 TEL	. (616) 399-6070				Level	IV: SW846 (CLP-Like	1	4.0°C

ALS Group, USA Holland, Michigan

Client Name: MANNIK&SMITH

Sample Receipt Checklist

Date/Time Received:

25-May-23 22:30

Work Order:	23052445			Received b	oy: <u>D\$</u>	<u>3</u>		
Checklist compl	eted by <u>Siane Shaw</u>		26-May-23 Date	Reviewed by:	Bill Carey eSignature			26-May-23 Date
Matrices: Carrier name:	Groundwater, Water Courier	ı						ı
Shipping contain	ner/cooler in good condition?		Yes 🗸	No 🗌	Not Present			
Custody seals in	ntact on shipping container/coole	r?	Yes	No 🗌	Not Present	\checkmark		
Custody seals in	ntact on sample bottles?		Yes	No □	Not Present	~		
Chain of custod	y present?		Yes 🗸	No 🗆				
Chain of custod	y signed when relinquished and	received?	Yes 🗸	No 🗆				
Chain of custod	y agrees with sample labels?		Yes 🗸	No 🗆				
Samples in prop	per container/bottle?		Yes 🗸	No 🗆				
Sample contain	ers intact?		Yes 🗸	No □				
Sufficient sampl	e volume for indicated test?		Yes 🗸	No 🗆				
All samples rece	eived within holding time?		Yes 🗸	No □				
Container/Temp	Blank temperature in compliand	e?	Yes 🗸	No □				
Sample(s) recei Temperature(s)	ved on ice? /Thermometer(s):		Yes <u>▼</u>	No 🗆	DF2			
Cooler(s)/Kit(s):								
	ole(s) sent to storage:			3 10:00:26 AM	Na VOA stala asi	la andre and		
	als have zero headspace?		Yes 🗸		No VOA vials su	omittea		
	eptable upon receipt?		Yes 🗸		N/A			
pH adjusted? pH adjusted by:			Yes _	No ✓	N/A L			
Login Notes:	pH check <2.							
====							====	=====
Client Contacted	d:	Date Contacted:	:	Persor	Contacted:			
Contacted By:		Regarding:						
Comments:								
CorrectiveAction	n:						SRC	Page 1 of 1

REPORT ON RESPONSE ACTIVITY PLAN IMPLEMENTATION

1301-1303 FRANKLIN STREET MOUNT PLEASANT, MICHIGAN

SEPTEMBER 28, 2022

PREPARED FOR:

THE CITY OF MOUNT PLEASANT DIVISION OF PUBLIC WORKS MOUNT PLEASANT, MICHIGAN

320 WEST BROADWAY MOUNT PLEASANT, MICHIGAN

TABLE OF CONTENTS Report on Response Activity Plan Implementation 1301-1303 Franklin Street

Mount Pleasant, Isabella County, Michigan

<u>SECT</u>	<u>ION:</u>	<u>PAGE NO.</u>
1.0	INTRODUCTION	
	1.2 Project Background	
2.0	PURPOSE AND SCOPE	
3.0	FIELD INVESTIGATION	
	3.1 Deep Exploratory Borings	
	3.2 Monitoring Well Installation	
	3.3 Groundwater Sampling and Analysis3.4 Soil Sample Testing	
4.0	CONCEPTUAL SITE MODEL	
4.0	4.1 Regional Hydrogeology	
	4.2 Site Hydrogeology	
5.0	GROUNDWATER SAMPLE ANALYTICAL RESULTS	14
6.0	PATHWAY EVALUATION	15
7.0	CONCLUSIONS	16
8.0	REFERENCES	17
FIGUE	RES	
Figure		
Figure	·	
Figure		
Figure Figure		
Figure	·	
Figure	e 7 Generalized Geologic Profile B-B'	
Figure	· · ·	
Figure	e 9 Groundwater Sample Criteria Exceedances – May 16, 2022	
TABL	ES	
Table	5	
Table		
Table Table	l J	
Table	T Ordinawater Flow Velocity Calculations - Iviay 10, 2022	

TABLE OF CONTENTS (continued) Report on Response Activity Plan Implementation 1301-1303 Franklin Street Mount Pleasant, Isabella County, Michigan

APPENDICES

Appendix A Photo Log

Boring and Monitoring Well Logs Appendix B

Appendix C Field Sampling Forms

Laboratory Analytical Report (Groundwater) Appendix D

Appendix E Soil Sample Test Data

1.0 INTRODUCTION

The Mannik & Smith Group, Inc. (MSG) was retained by the City of Mount Pleasant, Michigan to provide professional environmental consulting services for investigation of a former landfill area at City-owned property located north of the intersection of West Pickard and North Franklin Streets in Mount Pleasant. MSG has been assisting the City with regulatory compliance issues associated with the former landfill area since November 2020. An investigation of the former landfill was conducted by MSG in 2021 under an Agreement for Services with The City based on MSG's March 2021 Proposal for Professional Services No. OP210419. The results of the investigation were documented in MSG's July 20, 2021 Report on Investigation of Former Landfill.

The investigation documented in the July 20, 2021 report focused primarily on delineation of the area of buried refuse, determining the suitability and engineering properties of the landfill's clay cap, and characterization of shallow groundwater conditions at the subject site. In addition, a Response Activity Plan for additional investigation of the former landfill was developed by MSG, as necessary and appropriate based on the findings contained in the above noted July 20, 2021 report and on regulatory requirements. The primarily objective of the additional investigation described in the September 8, 2021 Response Activity Plan (RAP) was characterization of site hydrogeologic conditions at depths below the base of the landfill.

The scope of work described in the September 8, 2021 RAP was implemented by MSG in 2022 under an Agreement for Services between the City of Mount Pleasant and MSG based on MSG's January 31, 2022 Proposal for RAP Implementation¹, as authorized by The City on February 14, 2022. This report presents the results of the RAP implementation activities.

1.1 Site Description

The subject site is located at 1301-1303 North Franklin Street in Mount Pleasant, Michigan, north of the intersection of North Franklin and West Pickard Streets. *Figure 1, Site Location*, depicts the location of the site as referenced to nearby roads and geographic features. The site is located north of and adjacent to the City's Wastewater Treatment Plant facility (1301 North Franklin) and facilities of the City's Street and Motor Pool Departments (1303 North Franklin), including a vehicle maintenance garage, a garage for storage of salt trucks, and other City-owned staging and storage areas. The site is located in a "SD-I (Industrial)" zoning district.

As shown on *Figure 2, Site Map*, the site is bordered by the Chippewa River on the west side. A golf course is located adjacent to the site on the north and northwest sides. A cemetery is located directly east of the site. Surrounding properties to the south and west of the site and north of West Pickard Street are primarily commercial/industrial. The area located south of West Pickard is primarily residential.

The central portion of the site is occupied by an area that was a formerly used as a landfill. There are low-lying wet areas located north and northeast of the former landfill area. A wooded area with numerous patches of wet ground is located east and northeast of the landfill area. Most of the western and northwestern portions of the site, including the area of the site located along the Chippewa River, are heavily wooded and vegetated. Access to most of the wooded/wet areas located to the north, west, and northeast of the former landfill area is very limited.

-

¹ MSG Proposal No.OP220226

1.2 Project Background

The landfill at the subject site reportedly operated from the 1950s until approximately 1975. For at least part of that time (in the 1960s), the landfill was licensed as a Solid Waste Disposal Area under former Michigan Public Act 87 (Garbage and Refuse Disposal Act). The landfill has a clay cap. The Chippewa River borders the site on the west, although it does not appear that the former landfill area extends laterally to the river.

In late 2018, a clay tile pipe located on the riverbank at the site was identified to be draining into the river. Further investigation by City personnel found four additional pipes near the former landfill area. Water being discharged by the clay pipes was sampled and analyzed. Subsequent investigation by the City and an environmental services provider contracted by the City found elevated levels of regulated substances in the discharge water, including elevated levels of per and polyfluoroalkyl substances (PFAS). Initial investigation of groundwater at the site conducted in 2019 indicated that PFAS concentrations in site-specific shallow groundwater samples exceeded regulatory levels (Michigan Public Act 451² Part 201 Generic Cleanup Criteria) for both the drinking water (DW) and groundwater surface water interface (GSI) exposure pathways.

Additional monitoring wells were installed at the site in 2019-2020 by others and additional groundwater samples were collected and analyzed. The groundwater sample analytical results indicated that PFAS concentrations and concentrations of other analytes (metals, volatile organic compounds, semivolatile organic compounds, and polychlorinated biphenyls) exceeded Part 201 residential and/or nonresidential Generic Cleanup Criteria (GCC). The site-specific shallow groundwater flow direction was not determined. Deeper groundwater underlying the site was not investigated.

The City of Mt. Pleasant has been working closely with the Michigan Department of Environment, Great Lakes, and Energy (EGLE) Remediation and Redevelopment Division (RRD) since the discharge into the Chippewa River was first discovered. Seventeen groundwater monitoring wells were installed in and around the landfill area at the site in 2019-2020 by AKTPeerless (AKT) of Saginaw, Michigan. Groundwater samples have been collected from most of the wells and have been analyzed for an extensive parameter list. The clay pipes have reportedly been grouted and capped.

MSG conducted Ground Water Testing Project Number 3 for the City in November and December 2020 under the scope of work specified in the August 2020 Request for Proposals issued by the City. Nine additional shallow groundwater monitoring wells were installed by MSG in November 2020. Six of the nine monitoring wells installed by MSG are located in close proximity to the Chippewa River. Groundwater samples were collected in November 2020 from the nine new monitoring wells and from four of the previously installed monitoring wells. The November 2020 groundwater samples were analyzed for an extensive suite of analytes including PFAS compounds.

The results of Ground Water Testing Project Number 3 were documented in a report by MSG dated December 22, 2020. The results indicated that the shallow groundwater at some of the onsite monitoring well locations, including locations in close proximity to the Chippewa River, contained concentrations of PFAS compounds and dissolved phase metals (dissolved boron and dissolved arsenic) that exceeded Part 201 GCC for the DW and/or GSI exposure pathways. No PCBs were detected in the November 2020 groundwater samples. None of the samples contained volatile organic compounds or semi-volatile organics at concentrations that exceeded Part 201 GCC.

A meeting with City of Mount Pleasant, EGLE RRD, and MSG personnel was convened on February 22, 2021 to review the results of Ground Water Testing Project Number 3. During the meeting, EGLE RRD personnel outlined additional site characterization measures necessary for regulatory compliance under Part 201 of NREPA. As requested by the City of Mt. Pleasant, MSG developed a scope of work to complete the next phase

THE MANNIK & SMITH GROUP, INC.

² The Natural Resources and Environmental Protection Act (NREPA), Michigan Public Act 451, 1994 as amended.

of site characterization required by EGLE (MSG Proposal No. OP 210419 dated March 2, 2021). Following a request by EGLE RRD personnel, the scope of work was revised to include a shallow groundwater monitoring event. The revised MSG proposal No. OP 210419 was reissued to the City on March 24, 2021 and was authorized by the City on April 14, 2021. The investigation conducted by MSG in 2021 included:

- Determining the exact locations, ground surface elevations, top of well casing elevations, total depths, and overall condition of the site monitoring wells. Seventeen monitoring wells were installed at the site by AKT in 2019-2020. Nine additional monitoring wells were installed at the site by MSG in 2020. In addition, 6 monitoring wells were reportedly installed at the site by Keck Consulting Services, Inc. (Keck) in 1977.
- Measuring and recording static groundwater levels in each of the site monitoring wells, referenced to the respective well top of casing elevations.
- Determining the site-specific groundwater flow direction for the shallow groundwater zone.
- Conducting a groundwater monitoring event utilizing existing groundwater monitoring wells located near the Chippewa River and the wet areas in the northern and northeast portions of the site.
- Investigating the lateral and vertical extent of buried refuse at the site and the composition of the refuse.
- Determining the thickness of the landfill cover (clay cap).
- Collecting samples of the landfill cover materials and testing selected samples for relevant engineering properties.
- Preparing a technical report documenting the investigative methods and findings.
- Developing a work plan (Response Action Plan) for additional investigation, as necessary and appropriate based on the available data and information and EGLE RRD regulatory requirements under Part 201 of NREPA.

The results of the 2021 investigation indicated that the site-specific shallow groundwater flows to the west/northwest towards the Chippewa River with a flow velocity of 3.2-7.8 feet/day (1168-2847 feet/year) and an average hydraulic conductivity of 0.033 cm/sec (93.5 feet/day). The area of buried refuse at the site is approximately 17 acres. The known maximum depth of buried refuse is on the order of approximately 26-30 feet below the ground surface (bgs). The observed buried refuse consists primarily of paper (including decomposing newspaper); metal (including aluminum cans); glass fragments; metal fragments; construction and demolition debris including wood, concrete debris, roofing materials, and bricks; cloth/fabric; and fibrous materials of uncertain origin. The buried refuse was most commonly mixed with soil including sand, clayey sand, and sandy clay. In general, there was more soil and wood than refuse present in the soil/refuse mixture.

The results of the May 2021 shallow groundwater monitoring event indicated that PCBs and SVOCs were not detected in the shallow groundwater samples. One VOC was detected in one shallow groundwater sample at a concentration below residential and nonresidential GCC. The reported dissolved arsenic, dissolved aluminum, and dissolved boron concentrations of some of the May 2021 shallow groundwater samples exceeded the respective GCC for the drinking water exposure pathway. The dissolved arsenic concentrations for two of the shallow groundwater samples exceeded the respective GSI GCC. The reported PFAS concentrations for the groundwater samples from 6 of the shallow groundwater monitoring wells were above the respective DW GCC. The reported PFOS³ concentrations for the groundwater samples from 4 of the shallow monitoring wells were above the GSI GCC for PFOS.

The buried refuse at the site is covered by a clay cap that is at least two feet thick. The results of geotechnical engineering tests completed on samples of the clay cap materials indicate that the clay cap is generally suitable for landfill cover purposes.

THE MANNIK & SMITH GROUP, INC.

³ PFOS (Perfluorooctanesulfonic Acid) is a PFAS compound that is regulated under Part 201 of NREPA

The September 8, 2021 Response Action Plan was formally submitted to EGLE RRD on December 6, 2021 and was approved with conditions by EGLE via correspondence dated December 14, 2021.

2.0 PURPOSE AND SCOPE

The primary objective of the work described in the Response Activity Plan was to investigate and characterize site-specific hydrogeologic conditions at depths below the base of the former landfill and below the shallow groundwater zone at the site. Based on the information provided on the logs for existing AKT monitoring wells MW-3-19, MW-4-19, MW-5-19 and MW-6-19 and the ground surface elevations at those locations determined by MSG during the 2021 monitoring well survey, the base of the former landfill is at elevations generally on the order of 740-750 feet, assuming that buried refuse extends to a maximum depth of 26 feet bgs as noted on the AKT logs. Therefore, the RAP implementation activities included characterizing site-specific hydrogeologic conditions at depths below an approximate elevation of 745 feet.

The investigation of deep groundwater conditions at the site included five primary tasks:

- 1. Deep exploratory borings
- 2. Installation of deep groundwater monitoring wells
- 3. Soil laboratory testing
- 4. Deep monitoring well sampling and analysis
- 5. Shallow groundwater sampling and analysis
- 6. Data review, evaluation, and technical report preparation

The RAP implementation activities were directed and overseen by a Certified Professional Geologist (CPG) from MSG's Canton, Michigan office. The individual tasks are described below in more detail.

3.0 FIELD INVESTIGATION

The field portion of the RAP implementation activities was conducted by MSG personnel in April and May 2022 under the direct supervision of a Certified Professional Geologist (CPG) from MSG's Canton, Michigan office. Six deep exploratory borings were drilled and sampled during the period of April 11-13, 2022. Groundwater monitoring wells were installed in three of the exploratory borings. A shallow groundwater sampling event was conducted by MSG field personnel on May 16, 2022.

The six deep exploratory borings were drilled and sampled to depths of 40-50 feet below the ground surface, corresponding to elevations of approximately 704.2 feet to 719.5 feet. Low permeability cohesive soils (glacial till and hardpan-like till) were encountered at depth in each of the six exploratory borings. The glacial till/hardpan soils extended to the boring terminus depth at each of the deep exploratory boring locations. No deep water-bearing zones or lower aquifers were encountered in the April 2022 borings. Therefore, three new groundwater monitoring wells were installed at the base of the uppermost groundwater bearing zone, with two of the three new monitoring wells located upgrdadient of the landfill area and one at a downgradient location.

Photographs of the RAP implementation field activities are included in *Appendix A, Photo Log.*

3.1 Deep Exploratory Borings

Six deep exploratory borings, designated SB-19 through SB-21 and MW-200 through MW-202, were drilled and sampled at the approximate locations shown on Figure 2. The borings were drilled and sampled by Cascade Environmental of Flint, Michigan using a rubber track mounted Boart Longyear LS 250 Minisonic drill rig and rotosonic drilling methodology. A subsurface utility staking request was made through the MISS DIG utility locating system prior to commencement of drilling and sampling. The boring logs are included in *Appendix B, Boring and Monitoring Well Logs*.

The rotosonic drilling method uses high-frequency resonant energy to advance a core barrel into the subsurface formations. The resonant energy is transferred down the drill string to the drill bit face at various sonic frequencies. The subsurface materials are continuously cored and recovered using a 4-inch diameter steel coring barrel. The 4-inch diameter coring barrel is overridden by a six-inch diameter steel barrel that cases the borehole and prevents collapse. Water is used when necessary to reduce drilling friction and heat buildup.

As shown on Figure 2, borings SB-19 and SB-20 were located within the area of buried refuse. Each of these borings was drilled and sampled to a depth of 50 feet bgs (boring terminus elevations of 719.5 feet for each boring). Boring SB-21 was drilled to a depth of 40 feet bgs (terminus elevation of 706.5 feet) near the location of groundwater monitoring well MW-102 and approximately 60 feet from the Chippewa River. Borings MW-200 and MW-201 were each drilled to a depth of 50 feet (boring terminus elevations of 706 feet and 711.1 feet, respectively), near the eastern site boundary. Boring MW-202 was drilled to a depth of 40 feet bgs (terminus elevation of 704.2 feet) in relatively close proximity to the northwest corner of the area of buried refuse.

Four-inch diameter soil cores were collected at each boring location on a continuous basis from the ground surface to the respective boring terminus depths. Five foot long coring runs were used in the uppermost 10 feet of drilling, followed by 10-foot long runs from 10 feet bgs to the respective boring terminus depths. Sample recovery, as shown on the boring logs in Appendix B, was generally good, with 100% recovery in many cases. The recovered soils at each boring location were examined and logged in the field by an experienced MSG field geologist/CPG.

Upon completion of drilling and sampling, borings SB-19, SB-20, and SB-21 were backfilled with hydrated bentonite⁴ suitable for borehole decommissioning in environmental applications. Borings MW-200, MW-201, and MW-202 were used for installation of new groundwater monitoring wells, as described below in Section 3.2.

The locations of the borings were surveyed by MSG field personnel using a hand-held global positioning system (GPS) instrument with sub centimeter accuracy capability. The ground surface elevations at the locations of borings SB-19, SB-20, and SB-21 were also surveyed by MSG field personnel using a sub centimeter accuracy capability GPS unit. The ground surface elevations at the locations of the borings used for installation of groundwater monitoring wells (borings MW-200, MW-201, and MW-202) were surveyed by a professional survey crew from MSG's Canton, Michigan office under the supervision of an MSG State of Michigan licensed Professional Surveyor.

3.2 Monitoring Well Installation

Groundwater monitoring wells were installed in borings MW-200, MW-201, and MW-202 upon completion of drilling and soil sampling. The locations of the monitoring wells, also designated MW-200, MW-201, and MW-202 are shown on Figure 2. The monitoring well construction details are included on the boring/monitoring wells logs in Appendix B. Additional monitoring well information, including the location coordinates and elevations, is provided on *Table 1*, *Monitoring Well Information*.

Each well assembly consists of a 2-inch diameter 10-slot⁵ Schedule 40 PVC well screen flush threaded to 2-inch diameter Schedule 40 PVC riser pipe. As shown on the boring/monitoring well logs in Appendix B, the well screens for MW-200, MW-201 and MW-202 were set at the approximate base of the glacial lacustrine sand and gravel deposit that is the uppermost groundwater bearing geologic unit at the site. There were no

⁴ Puregold Medium Chips (NSF/ANSI/Standard 60 certified) manufactured by Cetgo/Minerals Technologies Incorporated

⁵ A 10-slot well screen has 0.010 inch openings

lower aquifers encountered in the deep exploratory borings. Each boring was terminated in low permeability cohesive glacial till material. Therefore, no deep monitoring wells were installed.

The well screens for MW-200 and MW-201 are 10 feet long and are set from 15-25 feet bgs. MW-202 has a five-foot long screen set from 4-9 feet bgs. Each well is equipped with an above ground riser and an above ground steel protective cover secured in a concrete pad at the ground surface.

The wells were developed by surging and pumping until the purge water became relatively clear. A professional survey crew from MSG's Canton, Michigan office surveyed the top of casing elevations of new monitoring wells MW-200, MW-201, and MW-202 to the nearest 0.01 foot. The survey crew's work was conducted under the supervision of a State of Michigan licensed Professional Surveyor from MSG's Canton office.

3.3 Groundwater Sampling and Analysis

A groundwater monitoring event was included as part of the RAP implementation activities. The following monitoring wells were sampled by MSG field personnel on May 16, 2022: MW-101 through MW-106, MW-108, MW-109, MW-9-20, MW-10-20, MW-14-20, MW-15-20, MW-200, MW-210, and MW-202.

The static groundwater level in each sampled well was measured by MSG personnel using an electronic water level meter prior to well purging and groundwater sampling. Static groundwater levels were also measured in monitoring wells MW-107, MW-1-19, MW-2-19, MW-7-20, MW-12-20, MW-16-20, MW-17-20, and MW-X. The water level meter has an accuracy of +/- 0.01 feet (approximately 1/8 inch). The static groundwater level measurements were recorded on field sampling forms that are included in *Appendix C*, *Field Sampling Forms*.

MSG personnel then purged and sampled the groundwater monitoring wells in general accordance with the United States Environmental Protection Agency (USEPA) *Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures* guidance document (EPA/540/S-95/504, April 1996). Groundwater samples were collected using a peristaltic pump equipped with high-density polyethylene (HDPE) tubing. A new HDPE disposable bailer and nylon rope were used for sampling monitoring well MW-109. Groundwater samples for PFAS analysis were collected in general accordance with the October 16, 2018 EGLE guidance document entitled *General PFAS Sampling Guidance*.

Water quality field parameters including pH, specific conductance, temperature, oxidation-reduction potential, specific conductance, turbidity, and dissolved oxygen were monitored during purging and sampling activities using a Horiba U-52 Multiparameter Water Quality Meter and Flowcell. Samples collected for metals analysis were filtered at the time of sampling using 0.45-micron disposable filters specifically designed for environmental groundwater sampling. A blind duplicate groundwater sample designated DUP was collected from monitoring well MW-200. A PFAS field blank sample was also collected at the location of MW-200 while MW-200 was being purged and sampled.

As noted on the field sampling forms in Appendix C, Monitoring wells MW-108 and MW-9-20 purged dry on May 16, 2022 and did not recharge sufficiently to allow for collection of groundwater samples.

The groundwater samples, PFAS field blank sample, and a laboratory-supplied trip blank sample were submitted under standard chain of custody protocol to the ALS Environmental laboratory in Holland, Michigan (ALS) for analysis. The groundwater samples were analyzed for VOCs, SVOCs, PCBs, sixteen dissolved metals⁶ and the PFAS compounds on the October 1, 2019 EGLE PFAS compound list, as specified in the RAP. PFAS analysis was conducted by Method EPA 537 Modified (537 Mod - isotope dilution method).

THE MANNIK & SMITH GROUP, INC.

⁶ The 10 Michigan metals (arsenic, barium, cadmium, chromium, copper, mercury, lead, selenium, silver, and zinc) and aluminum, antimony, beryllium, boron, nickel, and thallium.

The laboratory analytical data report provided by ALS is included in *Appendix D, Laboratory Analytical Report* (*Groundwater*). The May 16, 2022 groundwater sample analytical results are tabulated on *Table 2,* Groundwater Sample Analytical Data – Residential Criteria, and Table 3, Groundwater Sample Analytical Data – Nonresidential Criteria.

3.4 Soil Sample Testing

Twelve soil samples from the 4-inch diameter rotosonic drilling cores were collected for analysis for hydrogeologic/geotechnical engineering properties. The twelve soil samples included one sample of the granular glacial lacustrine sand and gravel materials within the screened interval of each of the three new groundwater monitoring wells installed (MW-200, MW-201, and MW-202), and nine samples of the cohesive glacial till materials that were encountered underneath the lacustrine sand and gravel and underneath the buried refuse within the former landfill area. At least one glacial till sample was collected from each deep exploratory boring for analysis.

The three granular lacustrine sand and gravel deposit samples were analyzed by MSG's Canton, Michigan Soil Mechanics Laboratory for grain size distribution by sieve analysis (ASTM D6913). The following lacustrine sand and gravel deposit samples were analyzed:

- Boring MW-200, 17-20 feet bgs
- Boring MW-201, 20-24 feet bgs
- Boring MW-202, 5-7 feet bgs

The nine samples of the cohesive glacial till soils that underlie the glacial sand and gravel and buried refuse at the site were analyzed for grain size distribution by sieve and hydrometer (ASTM D7928) and Atterberg Limits (ASTM D4318). The following glacial till soil samples were analyzed:

- Boring MW-200, 25.5-30 feet bgs
- Boring MW-200, 37-39.5 feet bgs
- Boring MW-201, 29-30 feet bgs
- Boring MW-201, 39-40 feet bgs
- Boring MW-202, 8.5-10 feet bgs
- Boring SB-19, 34-35 feet bgs
- Boring SB-19, 47-49 feet bgs
- Boring SB-20, 45-50 feet bgs
- Boring SB-21, 23-25 feet bgs

The grain size distribution and Atterberg Limits test results are included in *Appendix E*, *Soil Sample Test Data*. The test results are discussed further in Section 4.2 of this report. Photographs of the analyzed soil samples are included on pages 14-18 of the Photo Log in Appendix A.

4.0 CONCEPTUAL SITE MODEL

The conceptual site model (CSM) presented below for the subject site is based on currently available data and information regarding site hydrogeologic conditions. Like any CSM, it can be modified and updated as additional information and data become available.

4.1 Regional Hydrogeology

The subject site is located in the Saginaw glacial lobe in the south-central portion of the Michigan Basin geomorphic province. The Michigan Basin is a bowl-shaped intracratonic crustal depression that contains several thousand feet of relatively flat-lying sedimentary rocks deposited during the Paleozoic geologic era. These sedimentary rocks overlie older Precambrian age crystalline basement rocks. The maximum thickness of accumulated sedimentary rocks in the Michigan Basin is approximately 15,000 feet in the Midland area of the Lower Peninsula. In general, the Michigan Basin rocks are predominately carbonate evaporates of marine origin (dolomite and limestone) with lesser amounts of shale and sandstone.

Pleistocene age glacial drift sediments overlie the bedrock throughout most of the Michigan Basin. The glacial features are the result of advancing and retreating continental glaciers during the Wisconsin glacial stage of the Pleistocene epoch (approximately 35,000 to 10,000 years before present). The glacial drift ranges in thickness from less than 10 feet to several hundred feet. Glacial drift greater than 1,000 feet thick has been documented in parts of the north central Lower Peninsula of Michigan (Western Michigan University, 1982). Bedrock exposures in the Lower Peninsula are rare. Bedrock is not exposed in the Mount Pleasant area.

The glacial drift deposits in Isabella County range generally from 150 to 600 feet in total thickness and include: granular outwash deposits, lacustrine deposits, and glacial till characteristic of morainal terranes (Apple and Reeves, 2007). The till deposits are generally medium to coarse textured material but can range from clay to boulder size. The tills are found in three prominent glacial moraines that occur in the western portion of Isabella County, including the Gladwin Moraine. The glacial outwash deposits are composed primarily of sand and gravel. The lacustrine deposits can consist of sand, gravel, silt and/or clay.

The regional geologic setting of the site is shown on *Figure 3, Regional Geologic Setting*. The site is located on the western fringe of the Saginaw Lowlands, an extensive, relatively flat-lying glacial lake plain that formed when glacial ice retreated northeast from the Gladwin Moraine to Saginaw Bay (Westjohn and Hoard, 2006). The Gladwin Moraine allowed ponding of glacial meltwater and subsequent deposition of glacial lacustrine sediments when the Saginaw Lobe glacial ice retreated to Saginaw Bay and formed the Port Huron Moraine.

As shown on Figure 3, the subject site is located in an area of glacial lacustrine sand and gravel. The Gladwin Moraine is located to the west, northwest and southeast of the site. The glacial drift in the region is reported to be on the order of 280-350 feet thick (Western Michigan University, 1981; Westjohn and Hoard, 2006; Newcombe, 1933). The regional bedrock formations underlying the glacial drift are the Jurassic Red Beds and the Pennsylvanian age Saginaw Formation, neither of which are exposed at the surface in the Mount Pleasant area. The Jurassic Red Beds bedrock formation has been described as red mudstone, red sandstone/siltstone, and gypsum (Westjohn and Hoard, 2006), and as sandstone and shale with minor limestone and gypsum beds (Dorr and Eschman, 1970). The Pennsylvanian age Saginaw Formation bedrock consists primarily of sandstone with some interlayered shale, limestone, and coal beds. The bedrock underlying the glacial drift deposits at the site has been identified as the Jurassic Red Beds (Westjohn and Hoard, 2006).

Groundwater occurs regionally in the Pleistocene glacial deposits and in the underlying bedrock formations. Groundwater in the glacial lacustrine sand and gravel and glacial outwash deposits has been used historically for domestic use. Freshwater is encountered in the glacial deposits of the region, although saline water has been observed near the base of the glacial deposits. Both freshwater and saline water have been encountered in the underlying bedrock formations.

Glacial sands and gravels form the principal aquifer for domestic water supply wells in the region (Westjohn and Hoard, 2006). Apple and Reeves (2007) note that "According to the February 2005 Wellogic database, approximately 99 percent of the wells in Isabella County are completed in the glacial deposits, and less than 1 percent in the bedrock units."

Interpretation of well drillers' logs for water supply wells in the Wellogic database has identified a regional sand and gravel aquifer at depths ranging from approximately 60-130 feet bgs. These sands and gravels have been interpreted as glaciofluvial deposits from an outwash plain that form a regional glacial aquifer. Deeper aquifers in the 130-320 feet bgs depth interval within the glacial deposits of the region have also been identified.

In 2006, the United States Geological Survey published a report by D.B. Westjohn and C.J. Hoard titled *Hydrogeology and Groundwater Quality, Chippewa Township, Isabella County, Michigan, 2002-2005,* (U.S. Geological Survey Scientific Investigations Report 2006-5193). That report, which covered a study area that included the City of Mount Pleasant and contiguous townships, notes that logs of water supply wells in Chippewa Township (located directly east of Mount Pleasant) "indicate the presence of a near-surface clayrich unit in almost all areas. This upper clay unit is probably basal-lodgment till that was deposited by the Saginaw Lobe of glacial ice when ice advanced to the position of the Gladwin Moraine." The upper clay rich lodgment till described by Westjohn and Hoard (2006) is likely represented at the subject site by the till clay and hardpan-like till encountered directly below the surficial glacial lacustrine sand and gravel in the six deep exploratory borings completed at the subject site for the RAP implementation activities. Additional discussion is provided below in Section 4.2 of this report.

Westjohn and Hoard (2006) constructed a potentiometric surface map of groundwater in the glacial deposits of the region, based on static water levels recorded on 1,559 regional water supply wells. As shown on *Figure 4*, *Regional Groundwater Flow Direction*, there is a prominent sense of groundwater flow potential to the east for the glacial groundwater.

The City of Mount Pleasant owns and operates a municipal water supply system that supplies potable water to the City. The Mount Pleasant municipal water supply is derived from municipal water supply wells. None of the City's water supply wells is located within one (1) mile of the site. The surrounding township, Charter Township of Union (Union Township) also provides municipal water. The Union Township water supply is derived from seven (7) groundwater wells configured in three (3) separate well fields. The Township's water supply wells are set in a glacial sand and gravel aquifer and are located more than one (1) mile from the site.

As noted in MSG's December 22, 2020 Report on Groundwater Testing Project Number 3, public records indicate that there are 18 domestic water supply wells located within a one mile radius of the site. These wells have reported depths ranging from 19-238 feet bgs and are set in the glacial drift materials. Eleven of the 18 wells are listed as household wells.

4.2 Site Hydrogeology

The locations of the deep exploratory borings completed in April 2022 (SB-19 through SB-21 and MW-200 through MW-202) are shown on Figure 2. The boring logs are included in Appendix B. The logs in Appendix B also include construction details for the groundwater monitoring wells that were installed in borings MW-200, MW-201, and MW-202. As noted on the boring logs, the deep exploratory borings were drilled and sampled to depths of 40-50 feet bgs. The corresponding boring terminus elevations range from 704.2 feet to 719.5 feet. Based on the subsurface information derived from borings SB-19 and SB-20, the elevation of the base of buried refuse at the site is at an approximate elevation of 739.5-740.3 feet.

The subsurface geologic units at the site include a surficial deposit of granular soils (glacial lacustrine sand and gravel) underlain by clay-rich glacial till. Subsurface profiles have been developed to illustrate the approximate configuration of the site geology relative to the area of buried refuse and the Chippewa River. The locations and orientations of the geologic profiles are shown on *Figure 5*, *Geologic Profile Location Map*. The profiles are shown on *Figure 6*, *Generalized Geologic Profile A-A'* and *Figure 7*, *Generalized Geologic Profile B-B'*.

As shown on Figures 6 and 7, the surficial lacustrine sand and gravel deposit extends vertically to approximately elevation 730-735 feet or approximately 5-10 feet below the base of the buried refuse. The underlying clay-rich glacial till was encountered in each of the six deep exploratory borings and extends vertically to elevation 705 feet or deeper. Each of the six deep exploratory borings completed for the RAP implementation was terminated in the till deposit. Numerous photographs of the lacustrine sand and gravel and the glacial till recovered from the rotosonic borings are included in the Photo Log in Appendix A.

As noted on the boring logs in Appendix B and the soil sample test results in Appendix E, the glacial lacustrine sand and gravel deposit at the subject site consists primarily of silty sand, gravelly sand, and sandy gravel, classified as SM, SP and GW, respectively under the Unified Soil Classification System (USCS). The underlying glacial till consists primarily of silty-sandy clay (USCS classification as CL), with lesser amounts of clayey sand (SC) and silty-clayey sand (SC-SM). Seven of the nine analyzed till samples consist of CL soil material (lean clay). One of the till samples consists of SC soil material (clayey sand). One of the analyzed till samples consists of SC-SM soil material (silty, clayey sand) under the USCS.

A sandy silt layer encountered in boring MW-200 in the 21-25.5 feet bgs depth interval represents a transition between the overlying lacustrine sand and the underlying glacial till. As shown on Figure 7, sandy fill soils were encountered from the ground surface to 14.5 feet bgs at the location of boring MW-200, which is located in the grassy area outside of the former office portion of the maintenance garage building. A number of subsurface utilities are located in this area.

The glacial till deposit encountered in the deep exploratory borings included hard to very hard till⁷ and cemented hardpan-like till. These supplemental descriptions of the encountered till are noted on the boring logs. Very hard till was encountered from 8.5-40 feet bgs in boring MW-202, from 33.5-50 feet bgs in boring SB-19, from 40-44.5 feet bgs in boring SB-20, and from 12-25 feet bgs in boring SB-21. The cemented hardpan-like till was encountered in the borings at the following depth intervals:

- Boring MW-200 from 33-39.5 feet bgs and 47-50 feet bgs
- Boring MW-201 from 34.9-42 feet bgs
- Boring SB-20 from 44.5-50 feet bgs
- Boring SB-21 from 25-40 feet bgs

The hardpan-like till observed in the deep exploratory borings is analogous to the above noted near-surface upper clay-rich basal-lodgment till described by Westjohn and Hoard (2006).

Unconfined groundwater was encountered during drilling and soil sampling in April 2022 at depths ranging from 5-10 feet bgs. At the locations of borings MW-200 and MW-201, groundwater was encountered at 9 feet bgs in sandy fill soils and at 10 feet bgs in lacustrine silty sand, respectively. At the location of boring MW-202, groundwater was encountered at 5 feet bgs in lacustrine sandy gravel. At the location of boring SB-21, groundwater was encountered at 5 feet bgs in a silty clay layer located directly above a lacustrine sandy gravel layer at 7 feet bgs. Both MW-202 and SB-21 are located at lower elevations than borings MW-200 and MW-201.

Potable water was used during rotosonic drilling in the buried refuse at the locations of borings SB-19 and SB-20. The depth to encountered groundwater at those two boring locations could not be determined. The potable water from the City of Mount Pleasant municipal water supply system was obtained at the onsite maintenance garage (see Page 1 of the Photo Log in Appendix A).

THE MANNIK & SMITH GROUP, INC.

⁷ Hard corresponds to an estimated unconfined compressive strength of 8,000-16,000 pounds/square foot (PSF). Very hard corresponds to an estimated unconfined compressive strength of greater than 16,000 PSF.

The hydraulic conductivity of the shallow groundwater zone at the site can be approximated from grain size distribution data for the granular glacial lacustrine sand and gravel deposit using the empirical model developed by Hazen. The Hazen equation for soil hydraulic conductivity (K) can be expressed as K (in cm/sec) = $C(D_{10})^2$ where

C = Dimensionless constant equal to 1

D₁₀ = Grain size (in millimeters) at which 10% of the soil sample mass (by dry weight) is comprised of less than this value

The available D_{10} values for the granular soil samples collected from the screened intervals of the onsite monitoring wells (MW-104, MW-105, MW-109, MW-200, MW-201 and MW-202) range from 0.075 to 0.443, with an average D_{10} value of 0.22. Using the average D_{10} value and the Hazen empirical equation, the estimated K value for the lacustrine sand and gravel at the subject site is 0.0484 cm/sec (137.2 feet/day). This K value is consistent with the range of K values for sand and gravelly sand soils found in the published literature.

Static groundwater levels were measured and recorded for each of the monitoring wells sampled on May 16, 2022 prior to purging and sampling. Static groundwater levels were also measured in monitoring wells MW-107, MW-1-19, MW-2-19, MW-7-20, MW-16-20, MW-17-20, and MW-X on May 16, 2022. The static groundwater levels and corresponding piezometric surface elevations are provided on Table 1 and are shown graphically on *Figure 8, Groundwater Elevation Contour Map – May 16, 2022*.

The piezometric surface elevations shown on Figure 8 range from 738.04 feet at monitoring well MW-106 to 757.06 feet at monitoring well MW-7-20. The piezometric surface elevation for MW-7-20 is considered anomalously high for groundwater contouring. Monitoring well MW-7-20 was installed by AKT in February 2020 (prior to MSG's involvement with the subject site) and may be located within the area of buried refuse. The anomalously high peizometric surface elevation for MW-7-20 appears to be the result of groundwater mounding.

As shown on Figure 8, the sense of groundwater flow potential (primary groundwater flow direction) for the unconfined glacial lacustrine sand and gravel water-bearing zone at the site is to the west and northwest, generally towards the Chippewa River. It is noted that the Chippewa River bends generally eastward as it flows through the golf course property located directly north of the site beyond the view shown on Figure 8. As such, both the west and northwest shallow groundwater flow directions shown on Figure 8 indicate that the shallow groundwater flow towards the river.

Groundwater flow velocity at the site can be calculated using Darcy's Equation, V = Ki/n_e, where:

V = Groundwater flow velocity in feet per day

K = Hydraulic conductivity of the water-bearing unit in feet per day

i = Lateral hydraulic gradient in feet per foot (change in elevation ÷ change in lateral distance)

n_e = Effective porosity

Using the piezometric surface elevation data for May 16, 2022 shown on Figure 8, the site-specific shallow groundwater flow velocity for the site was calculated along the groundwater flow paths labeled as A, B, and C on Figure 8. The groundwater flow velocity calculations are provided on *Table 4*, *Groundwater Flow Velocity Calculations – May 16, 2022*. As shown on Table 4, the lateral hydraulic gradient was calculated to range from 0.0063 to 0.0068 ft/foot. Using the lateral gradients, an average hydraulic conductivity of 137.2 feet/day and an estimated effective porosity of 0.3, the calculated site-specific shallow groundwater flow velocity is 2.9-3.1 ft/day (1059-1132 ft/year).

5.0 GROUNDWATER SAMPLE ANALYTICAL RESULTS

The groundwater samples collected by MSG from monitoring wells MW-101 through MW-106, MW-109, MW-200, MW-201, MW-202, MW-10-20, MW-14-20, MW-15-20, and the blind duplicate sample collected from MW-200 on May 16, 2022 were analyzed by ALS for VOCs, SVOCs, PCBs, dissolved phase metals (10 Michigan metals plus aluminum, antimony, beryllium, boron, nickel, and thallium), and PFAS compounds (EGLE October 1, 2019 list). The field blank sample collected during groundwater sampling activities at the location of monitoring well MW-200 was analyzed for the above noted PFAS compounds. The laboratory analytical data report is included in Appendix D.

The May 2022 groundwater sample analytical data have been tabulated and compared to Part 201 Residential GCC on Table 2. The groundwater sample analytical results have also been compared to Part 201 Nonresidential GCC on Table 3. The data is discussed below in terms of parameter groupings. Exceedances of the GCC are depicted graphically on *Figure 9, Groundwater Sample Criteria Exceedances – May 16, 2022*.

<u>PCBs</u> - PCBs were not detected in any of the May 2022 groundwater samples.

SVOCs – SVOCs were not detected in any of the May 2022 groundwater samples.

<u>VOCs</u> – one VOC compound was detected in the groundwater sample from monitoring well MW-202. The reported chlorobenzene concentration of 6.1 micrograms/liter (ug/l) for the groundwater sample from MW-202 is below the residential and nonresidential DW GCC of 100 ug/l, and is also below the GSI GCC of 25 ug/l. No other VOCs were detected in the groundwater sample from MW-202. VOCs were not detected in any of the other May 2022 groundwater samples.

<u>PFAS</u> – as shown on Table 1 and Table 2, PFAS compounds were detected in each of the fourteen groundwater samples collected at the subject site on May 16, 2022. Exceedances of the DW GCC for PFAs compounds are observed for MW-101 (PFOS and PFOA⁸), MW-102 (PFOS and PFOA), MW-106 (PFOA), MW-109 (PFOA), MW-200 and the associated blind duplicate (PFOA), MW-201 (PFOA), MW-202 (PFOS, PFOA, PFHxS, and PFNA⁹), MW-10-20 (PFHxS, PFNA, PFOS and PFOA), MW-14-20 (PFOA), and MW-15-20 (PFOS), Exceedances of the GSI GCC for PFAS compounds are observed at MW-101 (PFOS), MW-102 (PFOS), MW-202 (PFOS), and MW-10-20 (PFOS).

The reported PFAS concentrations for the groundwater samples collected from monitoring wells MW-103, MW-104, and MW-105 are below the Residential and Nonresidential GCC for the drinking water exposure and GSI exposure pathways.

<u>Metals</u> – dissolved phase metals were detected in each of the groundwater samples collected at the site on May 16, 2022. Exceedances of the DW GCC are observed for the groundwater samples from monitoring wells MW-102 (dissolved boron), MW-103 (dissolved arsenic), MW-105 (dissolved arsenic), MW-109 (dissolved aluminum), and MW-202 (dissolved boron). Exceedances of the GSI GCC are observed for the groundwater samples from monitoring wells MW-103 (dissolved arsenic), and MW-105 (dissolved arsenic).

The reported dissolved metals concentrations for the groundwater samples collected on May 16, 2022 from monitoring wells MW-101, MW-104, MW-106, MW-200, MW-201, MW-10-20, MW-14-20, and MW-15-20 are below the Residential and Nonresidential GCC for the DW and GSI exposure pathways.

As shown on Figure 9, there are exceedances of the Part 201 Residential and Nonresidential GCC for the May 16, 2022 groundwater samples collected from monitoring wells located on the west, north and east sides of the landfill area. Most of the GCC exceedances for the GSI pathway occur west of the area of buried refuse at monitoring wells

_

⁸ Perfluorooctanesulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA), respectively

⁹ Perfluorohexanesulfonic Acid (PFHxS) and Perfluorononanoic Acid (PFNA), respectively

MW-101, MW-102, MW-103, and MW-105 located along the Chippewa River, and at MW-202. Each of these monitoring wells is located hydraulically downgradient of the landfill area with respect to the shallow groundwater flow direction. The other monitoring well showing a GSI exceedance (MW-10-20) is located in close proximity to the northeast corner of the landfill area. It is likely that the extent of shallow groundwater with elevated concentrations of metals and/or PFAS extends downgraqdient from the landfill to the west and northwest to the Chippewa River, and to the north towards the river where it flows through the offsite golf course area.

The May 2022 groundwater samples collected from monitoring wells located east and southeast of the landfill (MW-200 and MW-201) show exceedances of the DW GCC for PFOA, but do not exhibit GSI exceedances. MW-201 is located hydraulically upgrapdient of the area of buried refuse. MW-200 appears to be in a cross-gradient location. Both MW-200 and MW-201 are located outside of the groundwater flow path of the area of buried refuse, indicating the possibility of an upgradient, offsite source or sources to the east or southeast of the site.

The Michigan PFAS Action Response Team (MPART) is a team of seven state government agencies of created in 2017 by executive order of the Governor to identify PFAS sources and address PFAS contamination in Michigan. MPART became an advisory body within EGLE in 2019. MPART maintains a List of PFAS Sites and Areas of Interest and an associated PFAS Geographic Information System (GIS). The MPART GIS shows three PFAS sites in the Mt. Pleasant area including:

- 1. The subject site
- 2. The Roosevelt Refinery site (600 W. Pickard Street)
- 3. The 104 North Kinney Avenue site (104 North Kinney Avenue)

The Roosevelt Refinery was a crude oil refinery that operated from the 1930s to the early 1970s. It is located at 600 W. Pickard Street on the west side of the Chippewa River opposite the subject site. The location of the Roosevelt Refinery on the west side of the Chippewa River makes it an unlikely source of groundwater impacts to the subject site.

The 104 North Kinney Avenue (NKA) site is an operating commercial dry cleaner that is reportedly associated with a plume of tetrachloroethylene-impacted groundwater. According to the EGLE MPART listing, concentrations of tetrachloroethylene (PCE) have been found several blocks downgradient of the NKA site. According to the EGLE MPART listing for the NKA site, nine of seventeen groundwater samples collected in November 2021 at locations surrounding the NKA site had PFOA concentrations above the DW GCC of 8 nanograms/liter (ng/l – equivalent to parts per trillion). The highest reported concentration was 160 ng/l.

The EGLE listing also notes that groundwater contamination associated with the NKA site is found in the 12-15 feet bgs depth range, and that groundwater flows to the northwest toward the Chippewa River. The NKA site is located approximately 0.8 miles southeast of the subject site. Based on its location relative to the location of the subject site and the northwest direction of shallow groundwater flow in the area, the NKA site could represent a possible upgradient offsite source of shallow groundwater contamination relative to the subject site.

6.0 PATHWAY EVALUATION

An exposure pathway is the link between a contaminant source and a receptor. An exposure pathway has five components:

- 1. A source of contamination
- 2. A transport mechanism
- 3. A point of exposure

¹⁰ The seven state agencies are EGLE and the Departments of Health and Human Services, Natural Resources, Agriculture and Rural Development, Transportation, Military and Veteran Affairs, and Licensing and Regulatory Affairs.

- 4. A route of exposure
- 5. A receptor population

When the five components are present, the pathway is considered complete.

For the subject site, the contaminant source is the landfill area. For the GSI exposure pathway, the transport mechanism is leaching and groundwater transport. The point of exposure is the water of the Chippewa River. The route of exposure is the shallow groundwater zone within the near surface glacial lacustrine sand and gravel deposit at the site. Receptors include aquatic organisms in the river, other organisms that may ingest the river water (e.g., deer, birds, farm animals, etc.), and possible recreational users. Although the Chippewa River water is not used locally or regionally as a source of potable water supply, it is a tributary to the Tittabawassee River. The Tittabawassee is a tributary to the Saginaw River. The Saginaw River empties into Saginaw Bay near Bay City. The GSI exposure pathway is considered complete for the subject site.

The unconfined shallow groundwater in the near surface glacial lacustrine sand and gravel deposit is the uppermost aquifer at the site. The near surface glacial lacustrine deposit groundwater flows toward the Chippewa River and presumably vents into the river at an elevation of approximately 733 feet along the west side of the site. The cohesive glacial till deposit that underlies the glacial lacustrine sand and gravel deposit across the site extends vertically to elevation 700 or lower. The till deposit acts as an aquitard preventing vertical migration of shallow groundwater into deeper aquifers that may be present and that may be used locally or regionally as sources of potable water. Therefore, the groundwater ingestion as drinking water exposure pathway is considered to be incomplete for the subject site.

The area of buried refuse at the subject site has a compacted clay cap. The clay cap is covered by extensive native grasses and other vegetation. The clay cap and surface vegetation prevent direct contact with the underlying buried refuse. The clay cap also acts as a barrier to vertical migration of landfill gas into ambient air.

The available records provided by the City for the landfill at the subject site indicate that construction of the landfill did not include gas management components, side slope liners, or a perimeter dike. Therefore, lateral migration of subsurface landfill gas, including methane, could be possible. There have been no known occurrences of lateral migration of subsurface gas from the landfill area. Although there are no aboveground structures present within the footprint of the landfill area, there are buildings located in close proximity to the landfill that are used by City personnel for municipal activities.

7.0 CONCLUSIONS

Based on the results of the RAP implementation activities completed for the former Mount Pleasant landfill as described herein, the following conclusions are made:

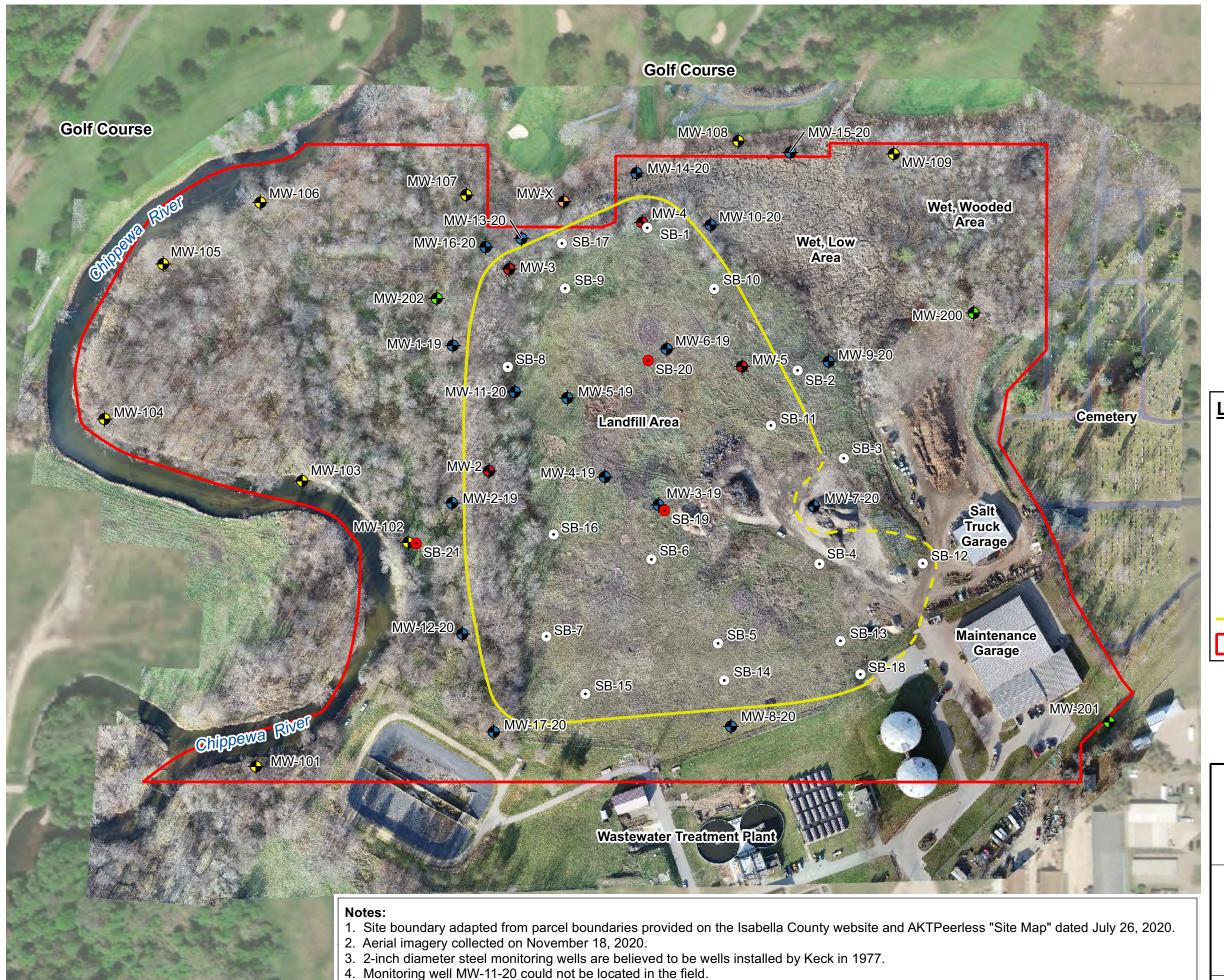
- The site is underlain by a near surface granular glacial lacustrine deposit that is on the order of 10-25 feet thick, depending on location and elevation within the site. The granular lacustrine deposit is underlain by a relatively thick, low permeability cohesive glacial till deposit that is extensive both laterally and vertically. The till deposit was encountered at depth in each of the six deep exploratory borings completed for the RAP implementation activities. The base of the till deposit was not encountered in any of the deep exploratory borings.
- The uppermost groundwater occurs in the granular lacustrine deposit under unconfined conditions. The underlying till deposit acts as a lower confining layer preventing vertical migration of the shallow groundwater. No lower groundwater zones were encountered in the deep exploratory borings completed for the RAP implementation.
- The site-specific shallow groundwater flow direction is primarily to the west and northwest towards the Chippewa River. The average hydraulic conductivity of the shallow groundwater zone is 0.0484 cm/sec (137.2 feet/day). The shallow groundwater flow velocity is approximately 3 feet/day (1,095 feet/year).

➤ The results of the May 2022 shallow groundwater monitoring event indicate that PCBs and SVOCs were not detected. One VOC was detected in one shallow groundwater sample at a concentration below the residential and nonresidential GCC. The reported dissolved arsenic, dissolved aluminum, and dissolved boron concentrations of some of the May 2022 shallow groundwater samples exceed the respective GCC for the drinking water exposure pathway. The dissolved arsenic concentrations for two of the shallow groundwater samples exceed the respective GSI GCC. The reported PFAS compound concentrations for the groundwater samples from 10 of the shallow groundwater monitoring wells were above the respective DW GCC. The reported PFOS concentrations for the groundwater samples from 4 of the shallow monitoring wells were above the GSI GCC for PFOS.

8.0 REFERENCES

Apple, B. A., and Reeves, H.W., 2007, Summary of Hydrogeologic Conditions by County for the State of Michigan, U.S. Geological Survey Open-File Report 2007-1236.

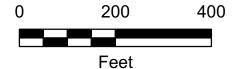
Dorr, J.A., and Eschman, D.F., 1970, Geology of Michigan, The University of Michigan Press.


Newcombe, R.B., 1933, Oil and Gas Fields of Michigan, Michigan Department of Conservation Geological Survey Division Publication 38, Geological Series 32.

United States Environmental Protection Agency (USEPA), 1996, Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures guidance document (EPA/540/S-95/504, April 1996).

Western Michigan University, 1981, Hydrogeologic Atlas of Michigan.

Westjohn, D.B., and Hoard, C.J., Hydrogeology and Groundwater Quality, Chippewa Township, Isabella County, Michigan, 2002-2005, U.S. Geological Survey Scientific Investigations Report 2006-5193.

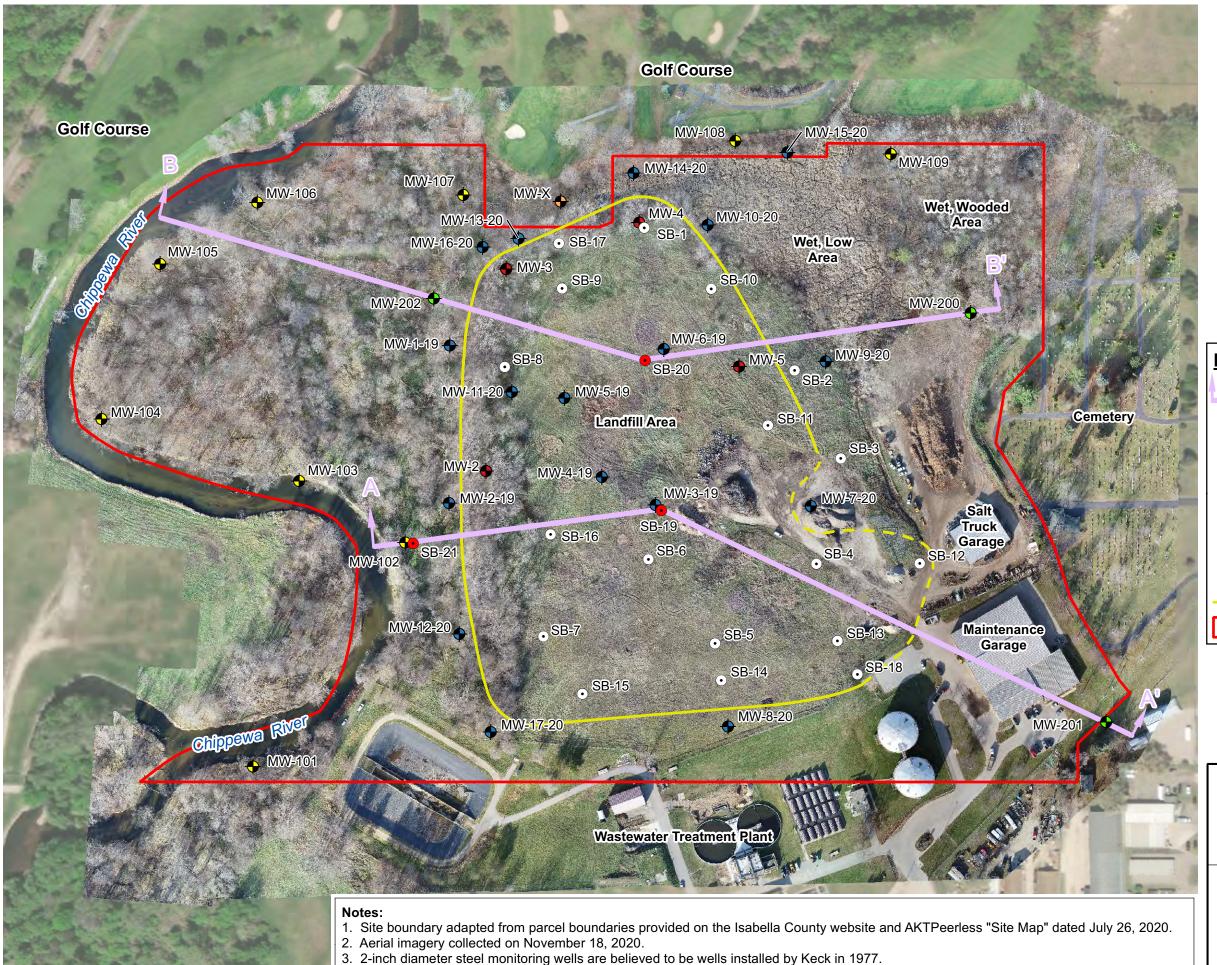

FIGURES

- Soil Boring Location MSG (May 2021)
- Soil Boring Location MSG (April 2022)
- PVC Monitoring Well MSG (Nov. 2020)
- PVC Monitoring Well -- MSG (April 2022)
- PVC Monitoring Well AKT (2019-2020)
- Steel Monitoring Well Keck (1977)
- Monitoring Well Undocumented Origin
- Approximate Extent of Buried Refuse

 Site Boundary (Approximate)

FIGURE 2

Site Map


1301-1303 North Franklin Street Mount Pleasant, Isabella County, MI

DATE DRAWN BY DESIGNED BY PROJECT NO. 4/20/22 CJB DJA M3460003

Date Saved: 4/25/2022 9:26:19 AM Path: W:\Proiects\Proiects K-O\M3460003\ENGAPPS\M346

Date Saved: 11/30/2020 4:53:10 PM

Date Saved: 11/30/2020 4:54:08 PM

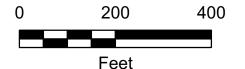
Geologic Profile Location and Orientation

Soil Boring Location - MSG (May 2021)

Soil Boring Location - MSG (April 2022)

PVC Monitoring Well - MSG (Nov. 2020)

PVC Monitoring Well -- MSG (April 2022)


PVC Monitoring Well - AKT (2019-2020)

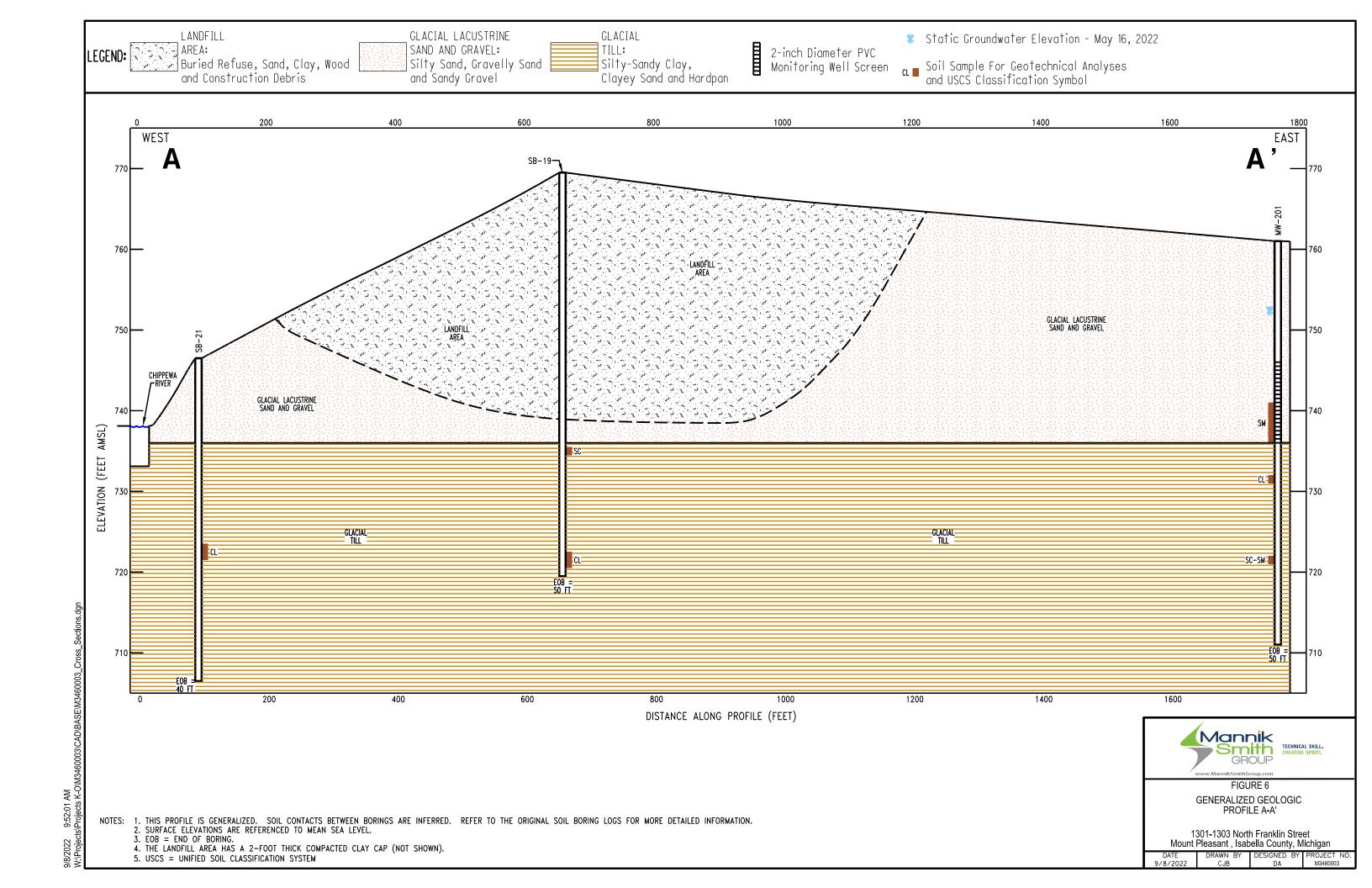
Steel Monitoring Well - Keck (1977)

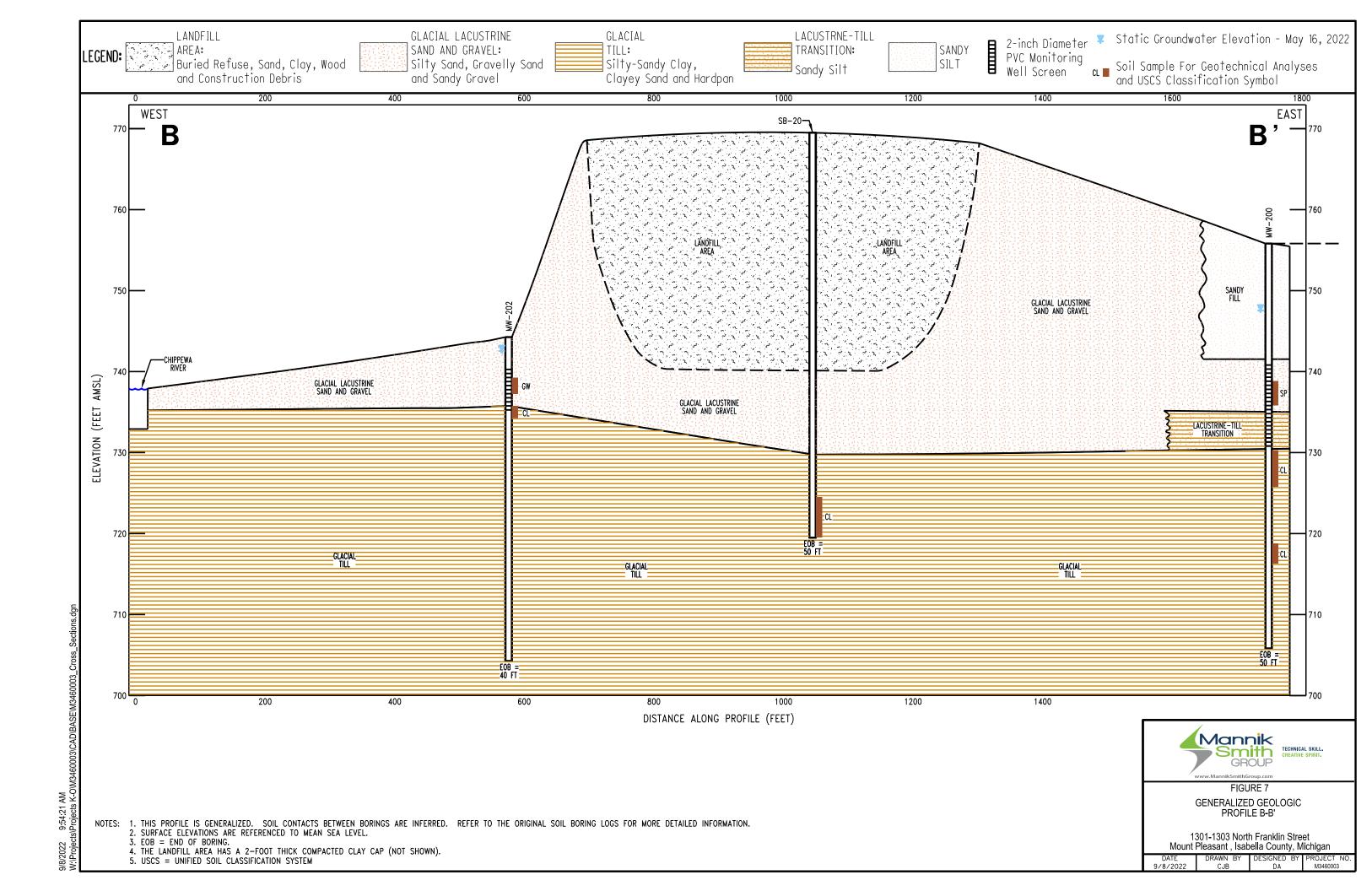
Monitoring Well - Undocumented Origin

Approximate Extent of Buried Refuse

Site Boundary (Approximate)

FIGURE 5


Geologic Profile Location Map


1301-1303 North Franklin Street Mount Pleasant, Isabella County, MI

DATE PROJECT NO. DRAWN BY DESIGNED BY 8/31/22 CJB M3460003

8/31/2022 10:30:21 AM ents/Projects K-O\M3460003\ENGAPI

4. Monitoring well MW-11-20 could not be located in the field.

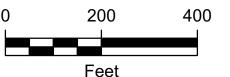
Legend

- Soil Boring Location MSG (May 2021)
- Soil Boring Location MSG (April 2022)
- PVC Monitoring Well MSG (Nov. 2020)
- PVC Monitoring Well -- MSG (April 2022)
- PVC Monitoring Well AKT (2019-2020)
- Steel Monitoring Well Keck (1977)
- Monitoring Well Undocumented Origin

Groundwater Flow Path and Velocity

Groundwater Elevation Contour (in feet)

* MW-7-20 not used for groundwater elevation contouring


Approximate Extent of Buried Refuse

Site Boundary (Approximate)

- 1. Site boundary adapted from parcel boundaries provided on the Isabella County website and AKTPeerless "Site Map" dated July 26, 2020.
- 2. Site Aerial imagery collected on November 18, 2020 by the Mannik & Smith Group.

1 inch = 200 feet

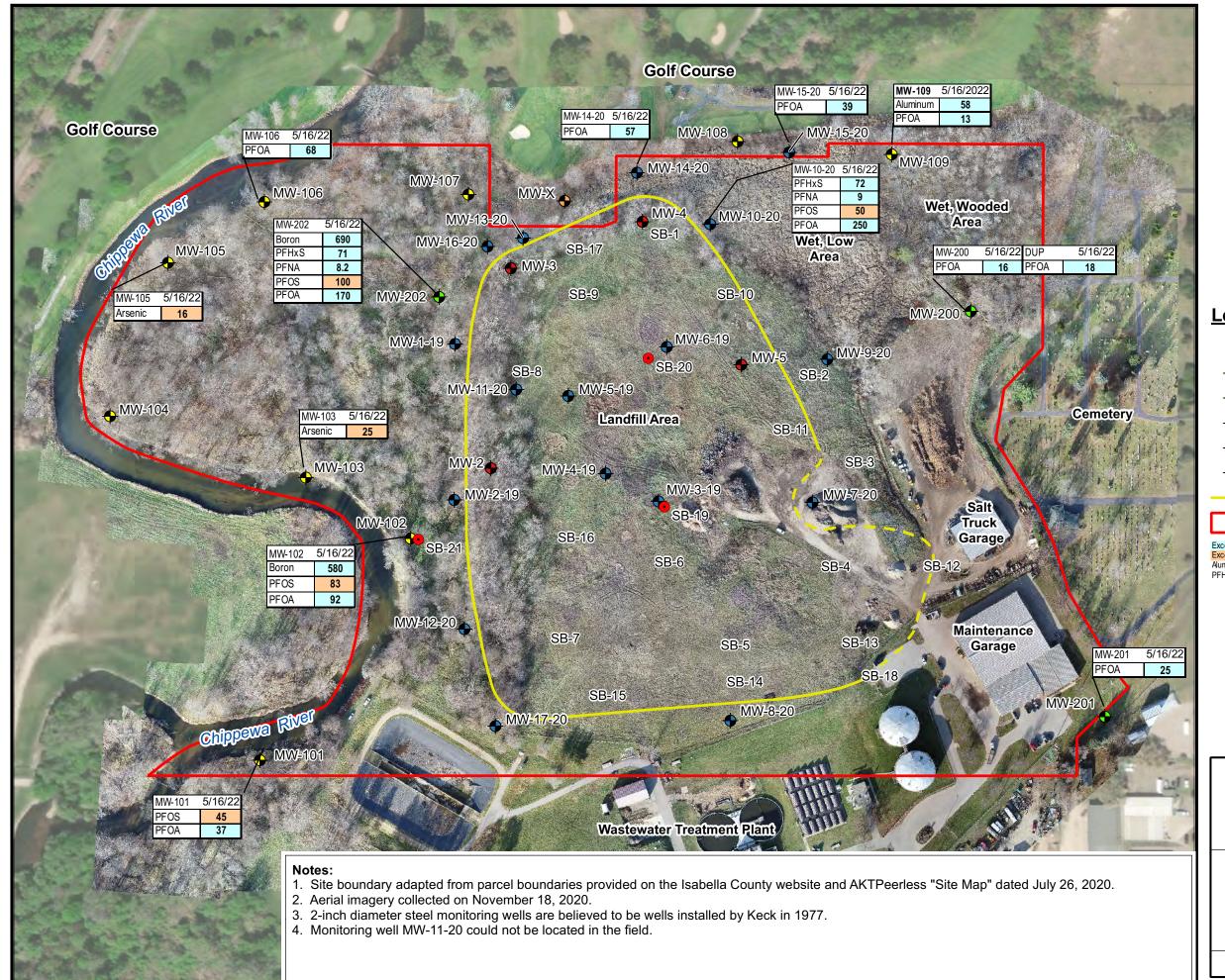
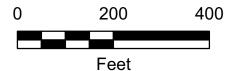


FIGURE 8

Groundwater Elevation Contour Map - May 16, 2022

1301-1303 North Franklin Street Mount Pleasant, Isabella County, MI

DATE DESIGNED BY PROJECT NO. DRAWN BY 9/6/2022 JRO M3460003


Legend

- Soil Boring Location MSG (April 2022)
- PVC Monitoring Well MSG (Nov. 2020)
- PVC Monitoring Well -- MSG (April 2022)
- PVC Monitoring Well AKT (2019-2020)
- Steel Monitoring Well Keck (1977)
- Monitoring Well Undocumented Origin

Approximate Extent of Buried Refuse

Site Boundary (Approximate)

Exceeds Generic Drinking Water Criteria (DWC)
Exceeds Generic DWC and GSIC
Aluminum, Arsenic and Boron results expressed in µg/L
PFHxS, PFOS, PFNA, and PFOA results expressed in ng/L

TABLES

Table 1 Monitoring Well Information Former Mt. Pleasant Landfill Mt. Pleasant, Michigan

Well ID	Northing (US State Plane - 1988)	Easting (US State Plane 1988)	Top of Casing Elevation (feet above msl)	Ground Surface Elevation (feet above msl)	Screen Length (feet)	Total Depth of Well from Ground Surface (feet)	Date	Depth to Water (from TOC)	Groundwater Elevation (feet)	Comments
							11/23/2020	5.19	737.88	1-inch diameter PVC well installed by MSG in November 2020
MW-101	771233.3	13013986.4	743.07	739.6	4.5	4.5	4/27/2021	5.40	737.67	
							5/7/2021 5/16/2022	5.22 3.76	737.85 739.31	
							11/23/2020	8.50	740.16	1-inch diameter PVC well installed by MSG in November 2020
MW-102	771701.2	13014294.6	748.66	746.3	5	7.0	4/27/2021	7.95	740.71	
							5/7/2021 5/16/2022	8.11 6.87	740.55 741.79	
							11/23/2020	2.20	738.33	1-inch diameter PVC well installed by MSG in November 2020
MW-103	771835.9	13014079.0	740.53	738.6	2	4.5	4/27/2021	3.32	737.21	
WW-103	771033.7	13014077.0	740.33	730.0	2	4.5	5/7/2021	3.11	737.42	
							5/16/2022 11/23/2020	2.00 7.06	738.53 737.42	1-inch diameter PVC well installed by MSG in November 2020
							4/27/2021	7.06	737.42	1-inch dameter PVC well installed by MSG in November 2020
MW-104	771953.6	13013657.9	744.48	741.2	3	4.5	5/7/2021	7.20	737.28	
							5/16/2022	5.79	738.69	
							11/23/2020 4/27/2021	6.34	737.18 736.95	1-inch diameter PVC well installed by MSG in November 2020
MW-105	772287.1	13013780.9	743.52	739.4	3	4.0	5/7/2021	6.43	737.09	
							5/16/2022	4.94	738.58	
							11/23/2020	7.46	736.79	1-inch diameter PVC well installed by MSG in November 2020
MW-106	772407.6	13013987.7	744.25	740.5	5	6.0	4/27/2021	7.73	736.52	
							5/7/2021 5/16/2022	7.50 6.21	736.75 738.04	
							11/23/2020	7.39	740.46	1-inch diameter PVC well installed by MSG in November 2020
MW-107	772432.6	13014416.2	747.85	745.9	5	8.0	4/27/2021	5.51	742.34	-
							5/16/2022	5.02	742.83	
							11/23/2020 4/27/2021	8.34 7.94	743.62 744.02	1-inch diameter PVC well installed by MSG in November 2020
MW-108	772535.6	13014982.4	751.96	750.8	5	8.5	5/7/2021	8.00	743.96	
							5/16/2022	7.70	744.26	
							11/23/2020	4.65	744.39	1-inch diameter PVC well installed by MSG in November 2020
MW-109	772508.7	13015306.9	749.04	746.1	3.5	5.0	4/27/2021 5/7/2021	4.71 4.63	744.33 744.41	
							5/16/2022	4.22	744.82	
										2-inch diameter PVC well installed by MSG in April 2022
MW-200	772179.7	13015473	759.04	756.0	10	25.0	5/16/2022	11.50	747.54	
										2-inch diameter PVC well installed by MSG in April 2022
MW-201	771328	13015755	764.12	761.1	10	25.0	5/16/2022	12.02	752.10	2-incit diameter PVC well illistatied by WISG III April 2022
					_					2-inch diameter PVC well installed by MSG in April 2022
MW-202	772211.3	13014355	746.85	744.2	5	9.0	5/16/2022	4.26	742.59	
			21221	245.4			4/27/2021	7.64	742.10	1-inch diameter PVC well installed by AKT in June 2019
MW-1-19	772110.0	13014388.0	749.74	745.4	10	7.0	5/16/2022	6.76	742.98	
MW-2-19	771782.6	13014386.0	749.49	745.2	5	7.0	4/27/2021	6.34	743.15	1-inch diameter PVC well installed by AKT in June 2019
							5/16/2022	5.20	744.29	1-inch dimater PVC well installed by AKT in 2019 - no well log - well depth from field measurements
MW-3-19	771778.7	13014817.0	773.77	771.5	5	12.4	4/27/2021	11.07	762.70	That direct 170 from mounted by Art in 2017 from the apparation from the accompanies.
MW-4-19	771837.3	13014705.0	775.91	774.5	5	28.0	4/27/2021	16.60	759.31	1-inch diameter PVC well installed by AKT in June 2019
										1-inch diameter PVC well installed by AKT in December 2019
MW-5-19	772000.9	13014626.0	778.92	775.6	5	28.0	4/27/2021	22.40	756.52	1-incir dameter PVC well installed by AKT in December 2019
MW-6-19	772103.1	13014834.0	773.43	767.9	5	28.0	4/27/2021	14.00	759.43	1-inch diameter PVC well installed by AKT in December 2019
IVIVV-U-17	772103.1	13014034.0	773.43	707.7	3	20.0				
MW-7-20	771776.7	13015740.0	769.72	767.5	5	12.0	4/27/2021 5/16/2022	13.51 12.66	756.21 757.06	1-inch diameter PVC well installed by AKT in February 2020
			222.12		-					1-inch diameter PVC well installed by AKT in February 2020
MW-8-20	771318.1	13014967.0	770.60	765.4	5	28.0	4/27/2021	19.14	751.46	
1011000	770077.5	12015174.0	755.00	752.0	-	10.0	4/27/2021	7.47	748.43	1-inch diameter PVC well installed by AKT in February 2020
MW-9-20	772077.1	13015171.0	755.90	753.9	5	12.0	5/7/2021 5/16/2022	7.88 6.59	748.02 749.31	
							4/27/2021	5.36	745.29	1-inch diameter PVC well installed by AKT in February 2020
MW-10-20	772361.2	13014925.0	750.65	746.7	5	12.0	5/7/2021	5.38	745.27	
			-				5/16/2022	5.29	745.36	1 inch diameter DVC well included by AVT in February 2020. This will would not be a second
MW-11-20	NF	NF	NF	NF	NF	NF	NF	NF	NF	1-inch diameter PVC well installed by AKT in February 2020. This well could not be located.
1811 12 00	771510.0	12014400.0	750.00	744.0	r	7.0	4/27/2021	6.50	6.50	1-inch diameter PVC well installed by AKT in February 2020
MW-12-20	771510.2	13014408.0	750.08	746.2	5	7.0	5/16/2022	5.39	744.69	
MW-13-20	772332.5	13014531.0	749.32	745.6	5	7.0	11/23/2020	5.15	744.17	1-inch diameter PVC well installed by AKT in February 2020
			+				4/27/2021 11/23/2020	6.09 7.00	743.23 744.27	PVC well installed by AKT in April 2020. 2-inch diameter PVC riser pipe visible at the ground surface
MW-14-20	772469.6	13014771.0	751.27	746.2	5	7.0	4/27/2021	6.65	744.62	The second secon
WW-14-2U	//2409.0	13014771.0	/51.2/	/40.2	5	7.0	5/7/2021	6.67	744.60	
							5/16/2022	6.22	745.05	DVC well installed by AVT in And 2000, 0 to the discussion DVC of
			1				11/23/2020 4/27/2021	5.43 5.22	744.30 744.51	PVC well installed by AKT in April 2020. 2-inch diameter PVC riser pipe visible at the ground surface
MW-15-20	772512.5	13015091.0	749.73	745.5	5	7.0	5/7/2021	5.25	744.51	
							5/16/2022	5.01	744.72	
101/2/22	77007 - 0	1201.151.0	750	74:0	_	7.0	11/23/2020	7.22	742.89	1-inch diameter PVC well installed by AKT in April 2020
MW-16-20	772314.9	13014456.0	750.11	746.3	5	7.0	4/27/2021 5/16/2022	7.07 6.52	743.04 743.59	
			nec ::	2017	_		4/27/2021	8.99	743.59	1-inch diameter PVC well installed by AKT in April 2020
MW-17-20	771306.4	13014473.0	753.24	752.7	5	7.0	5/16/2022	7.29	745.95	*** *** * y 1 ** * *
MW-X	772410.2	13014619.0	749.48	746.1	ND	6.4	4/27/2021	4.87	744.61	1-inch diamater PVC well of undocumented origin - no well log - well depth from field measurements
	İ	I.	1			l	5/16/2022	4.74	744.74	

Notes: NF = Well could not be located TOC = Feet from Top of Casing. msl = Mean Sea Level

Table 2 Groundwater Sample Analytical Data - Residential Criteria 1301-1303 North Franklin Street

Mount Pleasant, Isabella County, MI

		Detected Volatile O	Organic Compounds (VOCs)	Detected Semi-Volatile Organic Compounds (SVOCs)		Detecto	ed Metals (Diss	olved)							Detected F	PFAS Compou	unds (ng/L)			
GROUNDWATER: Part 201 Generic F December 21,											nic Acid (PFBS)	d (PFBA)	onic Acid (PFHpS)	cid (PFHpA)	nic Acid (PFHxS)	id (PFHxA)	id (PFNA)	nic Acid (PFOS)	d (PFOA)	cid (PFPeA)
Units: micrograms/li	iter (µg/L)	Acetine	()) euazuea ())	Эвгизаденуде	Aluminum	Arsenic	Barium	Boron	Copper (B)	Nickel (B)	Perfluorobutanesulfor	Perfluorobutanoic Aci	Perfluoroheptanesulfo	Perfluoroheptanoic Ao	Perfluorohexanesulfo	Perfluorohexanoic Ac	Perfluorononanoic Ac	Perfluorooctanesulfon	Perfluorooctanoic Aci	Perfluoropentanoic A
CAS Number		67-64-1	108907	100-52-7	7429-90-5	7440-38-2	7440-39-3	7440-42-8	7440-50-8	7440020	375-73-5	375-22-4	375-92-8	375-85-9	355-46-4	307-24-4	375-95-1	1763-23-1	335-67-1 2706-	91-4 2706-90-3
Drinking Water Criteria		730	100 (A)	NA	50(V)	10 (A)	2,000 (A)	500(F)	1,000 (E)	100 (A)	420	NA	NA	NA	51	400,000	6(A)	16(A)	8(A) N.	NA NA
Groundwater Surface Water Interface Crite	eria (GSI)	1,700	25	NA NA	NA	10	670 (G)	7,200(X)	13 (G)	73	NA	NA	NA	NA	NA	NA	NA	12(X)	12,000(X) N	
Groundwater Volatilization to Indoor Air Inh	halation Criteria	1.0E+09 (D,S)	2.10E+05	NA	NLV	NLV	NLV	NLV	NLV	NLV	NA	NA	NA	NA	NA	NA	NA	NLV	ID N	NA NA
Water Solubility		1.0E+09	4.7E+05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3100	9.50E+09 N	NA NA
Flammability & Explosivity Screening Level	l .	1.5E+07	1.6E+05	NA	ID	ID	ID	ID	ID	ID	NA	NA	NA	NA	NA	NA	NA	NA	NA N	NA NA
SAMPLE ID	SAMPLE DATE																			
MW-101	11/23/2020	<10	<1.0	<1.0	<10	<5.0	75	240	<5.0	ND	<4.8	6.2	<4.8	7.2	45	5.2	<4.8	28	28 6.	<4.8
MW-101	5/7/2021	<10	<1.0	<1.0	<10	<5.0	92	280	<5.0	ND	<4.8	<4.8	<4.8	<4.8	24	<4.8	<4.8	26	11 <4	
MW-101	5/16/2022	<10	<1.0	<4.0	15	<5.0	97	300	<5.0	ND	6.5	15	<4.8	8.6	51	8.2	<4.8	45	37 <4	
MW-102	11/23/2020	<10	<1.0	<1.0	<10	<5.0	170	650	<5.0	ND	14	27	6.5	48	60	46	<5.1	56	120 3	
MW-102	5/7/2021	25	<1.0	<1.0	11	<5.0	140	730	<5.0	ND	26	20	<4.9	22	35	29	<4.9	53	60 2	
MW-102	5/16/2022	25 <20	<1.0	<4.0	<10	5.4		580	<5.0	ND ND	27	31	6.0	32	50	38	<4.9	83	92 3	
MW-103	11/23/2020	<20 <10	<1.0	<4.0 <1.0	12	30	38	150	<5.0 <5.0	ND ND	6.2	30	<4.5	6.4	<4.5	13	<4.5	<1.8	3.4 <4	
		11-																		
MW-103 MW-103	5/7/2021	<10	<1.0 <1.0	<1.0	38	33	41	160	<5.0	ND ND	7.1	36 40	<4.7 <4.9	6.6	<4.7 <4.9	16 19	<4.7 <4.9	<1.9 <1.9	3.8 <4 4.8 <4	
100	5/16/2022	<10	<1.0	<3.8 <1.0	<10 <10	25	57	160	<5.0	IND	7.3									
MW-104	11/23/2020	110				<5.0		22	<5.0	ND	<4.6	16	<4.6	<4.6	<4.6	<4.6	<4.6	2.5	3.4 <4	
DUP-1 (MW-104)	11/23/2020	<10	<1.0	<1.0	<10	<5.0		23	<5.0	ND	<4.6	12	<4.6	<4.6	<4.6	<4.6	<4.6	<1.9	2.3 <4	
MW-104	5/7/2021	<10	<1.0	<1.0	<10	<5.0	76	25	<5.0	ND	<5.1	5.4	<5.1	<5.1	<5.1	<5.1	<5.1	<2.0	<2.0 <5	
MW-104	5/16/2022	<10	<1.0	<4.1	29	<5.0	86	25	< 5.0	ND	<4.9	13	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9 <4	
MW-105	11/23/2020	11	<1.0	2.2	25	44	190	22	<5.0	ND	7.2	69	<5.0	5.6	<5.0	9.9	<5.0	<2.0	6.5 <5	
MW-105	5/7/2021	<10	<1.0	<1.0	<10	47	160	<20	<5.0	ND	<5.5	27	<5.5	<5.5	<5.5	<5.5	<5.5	<2.2	2.8 <5	
MW-105	5/16/2022	<10	<1.0	<3.9	<10	16	140	28	<5	ND	11	65	<4.8	<4.8	<4.8	5.3	<4.8	<4.8	5.8 <4	
MW-106	11/23/2020	<10	<1.0	<1.0	<10	<5.0		280	<5.0	ND	11	67	<4.8	13	13	14	<4.8	6.5	26 1:	
MW-106	5/7/2021	<10	<1.0	<1.0	38	<5.0	85	380	<5.0	ND	17	96	<4.6	18	26	14	<4.6	14	67 1:	
MW-106	5/16/2022	<10	<1.0	<3.7	11	<5		420	10.10	ND	35	270	<5	25	29	28	<5	12	68 1	
MW-107	11/23/2020	<10	<1.0	<1.0	<10	<5.0	79	220	<5.0	ND	11	11	<4.6	10	26	7.1	<4.6	13	31 1	
MW-108	11/23/2020	<10	<1.0	<1.0	13	<5.0		190	<5.0	ND	8.4	11	<4.7	7.4	25	8.4	<4.7	5.5	14 7.	
MW-108	5/7/2021	<10	<1.0	NS	NS	NS	NS	NS	NS	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS N	
MW-109	11/23/2020	<10	<1.0	<1.0	<10	<5.0	240	93	<5.0	ND	6.4	11	<4.5	<4.5	11	<4.5	<4.5	3.8	15 <4	
MW-109	5/7/2021	<10	<1.0	<1.0	19	<5.0	150	100	<5.0	ND	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	2.5	6 <5	
MW-109	5/16/2022	<10	<1.0	<3.6	58	<5.0	190	130	<5.0	<5.0	5.8	30	<4.9	<4.9	6.4	<4.9	<4.9	5.8	13 <4	
MW- 200	5/16/2022	<10	<1.0	<3.9	32	9.6	300	110	<5.0	ND	6.1	9	<4.6	5	15	<4.6	<4.6	3.2	16 <4	
DUP (MW- 200)	5/16/2022	<10	<1.0	<3.8	34	10	290	110	<5.0	<5.0	5.8	8.1	<4.7	<4.7	15	5.4	<4.7	<4.7	18 5.	
MW- 201	5/16/2022	<10	<1.0	<3.8	<10	<5.0		88	<5.0	ND	17	10	<4.9	7.4	19	5.4	<4.9	<4.9	25 5.	
MW- 202	5/16/2022	<10	6.1	<3.7	15	<5.0	380	690	<5.0	5.6	22	470	7.5	45	71	38	8.2	100	170 1	
MW-9-20	5/7/2021	<10	<1.0	NS	NS	NS	NS	NS	NS	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS N	
MW-10-20	5/7/2021	<10	<1.0	<1.0	120	<5.0		580	<5.0	ND	15	25	<4.9	28	51	25	5.2	46	100 1	
DUP-1 (MW-10-20)	5/7/2021	<10	<1.0	<1.0	240	<5.0		570	<5.0	ND	14	26	<4.6	29	59	25	5.2	45	99 1	
MW-10-20	5/16/2022	<10	<1.0	<3.9	46	<5.0		460	<5.0	<5.0	13	44	7	51	72	37	9	50	250 2	
MW-13-20	11/23/2020	NS	NS	<1.0	<10	<5.0	140	280	<5.0	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS N	
MW-14-20	11/23/2020	NS	NS	<1.0	12	<5.0	120	230	<5.0	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS N	
MW-14-20	5/7/2021	<10	<1.0	<1.0	160	<5.0	97	110	<5.0	ND	8.2	16	<5.2	9.5	26	13	<5.2	12	27 6.	
MW-14-20	5/16/2022	<10	<1.0	<4.2	29	<5.0	140	110	<5.0	<5.0	7.2	30	<5.2	16	28	13	<5.2	11	57 6.	10
MW-15-20	11/23/2020	NS	NS	<1.0	<10	<5.0	250	160	5.2	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS N	
MW-15-20	5/7/2021	<10	<1.0	<1.0	210	<5.0	250	130	<5.0	ND	7.6	11	<4.9	6.7	18	8.9	<4.9	6.5	10 <4	9 5.8
MW-15-20	5/16/2022	<10	<1.0	<3.8	19	<5.0	180	94	<5.0	<5.0	9.3	40	<4.7	12	32	13	<4.9	7.1	39 5.	5 17
MW-16-20	11/23/2020	NS	NS	<1.0	49	<5.0	540	800	< 5.0	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS N	S NS

Notes:

Bold indicates concentration reported at or above laboratory reporting limit.

Exceeds Generic Groundwater Surface Water Interface Criteria (GSI)

Exceeds Dearnic Groundwater Surface Water Interface Criteria (GSI)

Exceeds DW and GSI

ND = Not Detected at or above laboratory reporting limit

NS = Not Sampled or Not Analyzed

NA = No Criteria Established

ng/L= Nanograms per liter

ID= Insufficient data to develop criterion

NLV= Not likely to volalitize under most conditions

PCBs were not detected in the Nov. 2020. May 2021, or May 2022 groundwater samples analyzed for PCBs.

The GSI values for Barium, Copper, and Nickle were calculated using the EGLE spreadsheet for calculating GSI cleanup criteria. The values presented are for surface water bodies protected as a drinking water source. A water hardness value of 150 milligrams per liter as CaCo3 was used for the calculations.

Notes in parentheses and standard abbreviations from EGLE Part 201 Resource Materials Table 1. Groundwater: Residential and Non Residential Part 201 Generic Cleanup Criteria and Screening Levels (December 21, 2020) and R299.49. Foolnotes for Generic Cleanup Criteria Tables (December 21, 2020)

Table 3 Groundwater Sample Analytical Data- Nonresidential Criteria 1301-1303 North Franklin Street Mount Pleasant, Isabella County, MI

Page	1	OI	1	

		Detected Volatile Orga	nic Compounds (VOCs)	Detected Semi-Volatile Organic Compounds (SVOCs)	Cs) Detected Metals (Dissolved)										Detected	PFAS Compou	nds (na/L)				
		Detected volatile orga	inc compounds (vocs)	betected Setti-Volatile Organic Compounds (SVOCs)		Detect	ed inetals (DIS	Solveuj					(Sd		(S)	r i A3 Compou	ilus (ilg/L)	_		(S)	
											PFBS)		PE.	(Ac	(PFHX)	txA)	2	PF0S)		(PFPe	8
GROUNDWATER: Part 201 Generic N											Acid ((PFBA	: Acid	(PFH	Acid	Æ.	(PF N	Acid (PFOA	: Acid	(PFP
December 21											읃	9	,ji	Acid	Sile.	8	흥	읃	D D	ğ.	cid
Units: micrograms	s/liter (µg/L)		€								SE SE	AC A	sell	ic A	salfo	C A	C Ac	읔	: Ac	Soulf	Sc A
) e	Φ							nes	jo i	tane	tanc	ane	anoi	ano	nues I	noi	tane	tanc
			nze	shyd	_				<u>@</u>	_	puts	put	hep	pep pep	hex	je je	<u> </u>	oct	octs	ben	ben
		oo e	ope .	ralde	Ē	.e.	⊑	_	Der (9 (B)	nou	norc	nor	norc	norc	nou	nouc	nou	nou	nouc	noic
		te p	웆	3enz	Į.	Arse.	Sariu	30ro	do	ş	_{bert}	erfl	erfl	erfl	erfl	Serff.	_{bert}	erfl	erll	erfl	erll
CAS Number		67-64-1	108907	100-52-7	7429-90-5	7440-38-2	7440-39-3	7440-42-8	7440-50-8	7440020	375-73-5	375-22-4	375-92-8	375-85-9	355-46-4	307-24-4	375-95-1 1	763-23-1 33	5-67-1	2706-91-4	2706-90-3
Drinking Water Criteria		2100	100 (A)	NA	50(V)	10 (A)	2,000 (A)	500(F)	1,000 (E)	100 (A)	420	NA	NA	NA	51	400,000	6(A)	16(A)	8(A)	NA	NA
Groundwater Surface Water Interface Crit	(,	1,700	25	NA	NA	10	670 (G)	7,200(X)	13 (G)	73	NA	NA	NA	NA	NA	NA		(.,	(X)000	NA	NA
Groundwater Volatilization to Indoor Air In	naiation Criteria	1.0E+09 (D,S)	4.7E+5 (S)	NA NA	NLV	NLV	NLV	NLV	NLV	NLV	NA NA	NA NA	NA NA	NA	NA	NA NA			ID OD	NA	NA NA
Water Solubility Flammability & Explosivity Screening Leve	al le	1.0E+09 1.5F+07	4.7E+05 1.6E+05	NA NA	NA ID	NA ID	NA ID	NA ID	NA ID	NA ID	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA			0E+09 NA	NA NA	NA NA
SAMPLE ID	SAMPLE DATE	1.3E+U/	1.0E+U3	IVA	עו	עו	עו	עו וע	IU	עו	IVA	I IVA	IVA	IVM	INA	IVA	IVM	IVM	IVA	IVM	IVA
MW-101	11/23/2020	<10	<1.0	<1.0	<10	<5.0	75	240	<5.0	ND	<4.8	6.2	<4.8	7.2	45	5.2	<4.8	28	28	6.1	<4.8
MW-101	5/7/2021	<10	<1.0	<1.0	<10	<5.0	92	280	<5.0	ND	<4.8	<4.8	<4.8	<4.8	24	<4.8	<4.8		11	<4.8	<4.8
MW-101	5/16/2022	<10	<1.0	<4.0	15	<5.0	97	300	<5.0	ND	6.5	15	<4.8	8.6	51	8.2	<4.8		37	<4.8	5.8
MW-102	11/23/2020	<10	<1.0	<1.0	<10	<5.0	170	650	<5.0	ND	14	27	6.5	48	60	46	<5.1	56	120	31	25
MW-102	5/7/2021	25	<1.0	<1.0	11	<5.0	140	730	<5.0	ND	26	20	<4.9	22	35	29	<4.9	53	60	23	12
MW-102	5/16/2022	<20	<1.0	<4.0	<10	5.4		580	<5.0	ND	27	31	6.0	32	50	38	<4.8		92	31	15
MW-103	11/23/2020	<10	<1.0	<1.0	12	30	38	150	<5.0	ND	6.2	30	<4.5	6.4	<4.5	13	<4.5		3.4	<4.5	4.9
MW-103 MW-103	5/7/2021	<10	<1.0	<1.0	38	33	41	160	<5.0	ND	7.1	36 40	<4.7	6.6	<4.7	16	<4.7		3.8	<4.7	5.0 7.2
MW-103	5/16/2022 11/23/2020	<10 <10	<1.0 <1.0	<3.8 <1.0	<10 <10	25 <5.0	57 70	160 22	<5.0 <5.0	ND ND	7.3 <4.6	16	<4.9 <4.6	6.9 <4.6	<4.9 <4.6	19 <4.6	<4.9 <4.6		4.8 3.4	<4.9 <4.6	<4.6
DUP-1 (MW-104)	11/23/2020	<10	<1.0	<1.0	<10	<5.0	53	23	<5.0	ND	<4.6	12	<4.6	<4.6	<4.6	<4.6			2.3	<4.6	<4.6
MW-104	5/7/2021	<10	<1.0	<1.0	<10	<5.0	76	25	<5.0	ND	<5.1	5.4	<5.1	<5.1	<5.1	<5.1	<5.1		<2.0	<5.1	<5.1
MW-104	5/16/2022	<10	<1.0	<4.1	29	<5.0	86	25	<5.0	ND	<4.9	13.0	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9
MW-105	11/23/2020	11	<1.0	2.2	25	44	190	22	<5.0	ND	7.2	69	<5.0	5.6	<5.0	9.9	<5.0		6.5	<5.0	17
MW-105 MW-105	5/7/2021	<10	<1.0	<1.0	<10	47	160	<20	<5.0	ND	<5.5	27	<5.5	<5.5	<5.5 <4.8	<5.5	<5.5		2.8	<5.5 <4.8	<5.5 11
MW-105	5/16/2022 11/23/2020	<10 <10	<1.0 <1.0	<3.9 <1.0	<10 <10	16 <5.0	140 54	28 280	<5 <5.0	ND ND	11 11	65 67	<4.8 <4.8	<4.8 13	<4.8 13	5.3 14	<4.8 <4.8		5.8	<4.8 12	4.8
MW-106	5/7/2021	<10	<1.0	<1.0	38	<5.0 <5.0	85	380	<5.0	ND	17	96	<4.6	18	26	14	<4.6		67	13	5.0
MW-106	5/16/2022	<10	<1.0	<3.7	11	<5	74	420	<5.0	ND	35	270	<5	25	29	28	<5		68	18	11.0
MW-107	11/23/2020	<10	<1.0	<1.0	<10	<5.0	79	220	<5.0	ND	11	11	<4.6	10	26	7.1	<4.6	13	31	16	<4.6
MW-108	11/23/2020	<10	<1.0	<1.0	13	<5.0	230	190	<5.0	ND	8.4	11	<4.7	7.4	25	8.4	<4.7		14	7.0	5.8
MW-108	5/7/2021	<10	<1.0	NS	NS	NS	NS	NS	NS	ND	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS
MW-109 MW-109	11/23/2020 5/7/2021	<10 <10	<1.0 <1.0	<1.0 <1.0	<10 19	<5.0 <5.0	240 150	93 100	<5.0 <5.0	ND ND	6.4 <5.1	11 <5.1	<4.5 <5.1	<4.5 <5.1	11 <5.1	<4.5 <5.1	<4.5 <5.1		15 6	<4.5 <5.1	<4.5 <5.1
MW-109	5/16/2022	<10 <10	<1.0 <1.0	<1.0 <3.6	19 58	<5.0 <5.0	190	130	<5.0 <5.0	<5.0	<5.1 5.8	<5.1 30	<5.1 <4.9	<5.1 <4.9	6.4	<5.1 <4.9	<5.1 <4.9		13	<5.1 <4.9	<5.1 <4.9
MW- 200	5/16/2022	<10	<1.0	<3.9	32	9.6	300	110	<5.0	ND	6.1	9	<4.6	5	15	<4.6	<4.6	3.2	16	<4.6	<4.6
DUP (MW- 200)	5/16/2022	<10	<1.0	<3.8	34	9.8	290	110	<5.0	<5.0	5.8	8.1	<4.7	<4.7	15	5.4	<4.7		18	5.7	<4.7
MW- 201	5/16/2022	<10	<1.0	<3.8	<10	<5.0	120	88	<5.0	ND	17	10	<4.9	7.4	19	5.4	<4.9		25	5.8	<4.9
MW- 202	5/16/2022	<10	6.1	<3.7	15	<5.0	380	690	<5.0	5.6	22	470	7.5	45	71	38	8.2		170	19	12
MW-9-20	5/7/2021	<10	<1.0	NS 1.0	NS 120	NS	NS 240	NS FOO	NS	ND	NS 1E	NS	NS -4.0	NS 20	NS E1	NS 2E	NS E 2		NS 100	NS 14	NS 14
MW-10-20 DUP-1 (MW-10-20)	5/7/2021 5/7/2021	<10 <10	<1.0 <1.0	<1.0 <1.0	120 240	<5.0 <5.0	340 340	580 570	<5.0 <5.0	ND ND	15 14	25 26	<4.9 <4.6	28 29	51 59	25 25	5.2 5.2		100 99	14 15	14 13
MW-10-20	5/16/2022	<10	<1.0	<3.9	46	<5.0 <5.0	270	460	<5.0	<5.0	13	44	<4.0 7	51	72	37	9		250	20	22
MW-13-20	11/23/2020	NS	NS	<1.0	<10	<5.0	140	280	<5.0	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-14-20	11/23/2020	NS	NS	<1.0	12	<5.0	120	230	<5.0	ND	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS
MW-14-20	5/7/2021	<10	<1.0	<1.0	160	<5.0	97	110	<5.0	ND	8.2	16	<5.2	9.5	26	13	<5.2		27	6.2	7.2
MW-14-20	5/16/2022	<10	<1.0	<4.2	29	<5.0	140	110	<5.0	<5.0	7.2	30	<5.2	16	28	13	<5.2		57	6.5	10
MW-15-20 MW-15-20	11/23/2020 5/7/2021	NS <10	NS <1.0	<1.0 <1.0	<10 210	<5.0 <5.0	250 250	160 130	5.2 <5.0	ND ND	NS 7.6	NS 11	NS <4.9	NS 6.7	NS 18	NS 8.9	NS <4.9		NS 10	NS <4.9	NS 5.8
MW-15-20	5/1/2021	<10 <10	<1.0 <1.0	<1.0 <3.8	19	<5.0 <5.0	180	94	<5.0 <5.0	(5.0	9.3	40	<4.9 <4.7	12	32	13	<4.9 <7.0		39	<4.9 5.5	5.8

Notes:

Bold indicates concentration reported at or above laboratory reporting limit.

Exceeds Generic Drinking Water Criteria (DW)

Exceeds Generic Groundwater Surface Water Interface Criteria (GSI)

Exceeds Applicable Groundwater Vapor Intrusion screening levels

Exceeds Applicable Groundwater Vapor Intrusion screening levels

Exceeds SSI Final Acute Value (FAV), also exceeds others

NS = Not Sampled or Not Inahalyzed

NA = No Criteria Established

ng/L = Nanograms per liter

ID = Insufficient data to develop criterion

NLV= Not likely to volatilize under most conditions

PCBs were not detected in the Nov. 2020, May 2021, or May 2022 groundwater samples analyzed for PCBs.

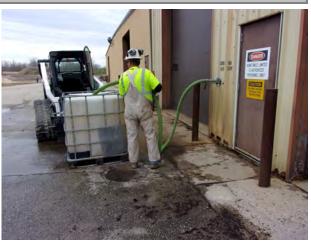
The GSI values for Barium, Copper and Nickle were calculated using the EGLE spreadsheet for calculating GSI cleanup criteria. The values presented are for surface water bodies protected as a drinking water source. A water hardness value of 150 milligrams per liter as CaCo3 was used for the calculations.

Notes in parentheses and standard abbreviations from EGLE Part 201 Resource Materials Table 1. Groundwater: Residential and Non Residential Part 201 Generic Cleanup Criteria and Screening Levels (December 21, 2020) and R299, 49 Foolnotes for Generic Cleanup Criteria Tables (December 21, 2020)

Dissolved Nickle was detected in the groundwater sample collected from MW-202 on May 16th 2022

Table 4 Groundwater Flow Velocity Calculations - May 16, 2022 Former Mt. Pleasant Landfill - Mt. Pleasant, Michigan

Date	Flow Path	Dh (ft)	DI (ft)	Hydraulic Gradient Dh/ Dl	Average Conductivity, K (ft/day)	Estimated Effective Porosity, n	Calculated Groundwater Flow Velocity (ft/day)
May 16, 2022	Α	10.0	1460	0.0068	137.2	0.3	3.1
May 16, 2022	В	13.0	1980	0.0066	137.2	0.3	3.0
May 16, 2022	С	7.0	1120	0.0063	137.2	0.3	2.9


Notes:

- 1. Hydraulic Conductivity (K) based on site-specific grain size distribution test data
- 2. Dh = Change in groundwater elevation (measured along the groundwater flow paths identified on Figure 8).
- 3. DI = Lateral distance along flow path (measured along the flow groundwater paths identified on Figure 8).
- 4. Velocity = (Dh/Dl) K / n
- 5. Static groundwater levels measaured by MSG personnel on May 16, 2022

APPENDIX A PHOTO LOG

Boart Longyear LS 250 Minisonic Drill Rig (4/11/2022).

Rotosonic drilling potable water supply at Mt. Pleasant vehicle maintenance garage (4/11/2022).

Rotosonic drilling at MW-201 (4/11/2022).

Contact of gravelly lacustrine sand (right) and fine grained lacustrine sand (left) at 8 feet bgs at MW-201 (4/11/2022).

Contact of gravelly lacustrine sand (left) and fine grained lacustrine sand (right) at 8 feet bgs at MW-201 (4/11/2022).

Drilling and retrieving soil core at MW-201 (4/11/2022).

Till clay from 25-30 feet bgs at MW-201 (4/11/2022).

Till clay from 25-30 feet bgs at MW-201 (4/11/2022).

Till clay from 25-30 feet bgs at MW-201 (4/11/2022).

Soil cores from 0-30 feet bgs at MW-201 (4/11/2022). Zero feet bgs is at top right. 30 feet bgs is at bottom left.

Hardpan-like till clay at 35 feet bgs at MW-201 (4/11/2022).

Hardpan-like till clay at 40 feet bgs at MW-201 (4/11/2022).

Hardpan-like till clay at 40 feet bgs at MW-201 (4/11/2022).

Hardpan-like till clay at 40 feet bgs at MW-201 (4/11/2022).

25-30 feet bgs (top) and 35-40 feet bgs (bottom) till clay soil cores from MW-201 (4/11/2022).

Till clay from 42-50 feet bgs at MW-201 (4/11/2022).

30-35 feet $\,$ bgs (top) and 40-45 feet bgs (bottom) till clay soil $\,$ cores from MW-201 (4/11/2022).

MW-200 location prior to drilling (4/12/2022).

Lacustrine sand from 15.5-20 feet bgs at MW-200 (4/12/2022).

Rotosonic drilling and soil core retrieval at MW-200 (4/12/2022).

Till clay from 25.5-30 feet bgs at MW-200 (4/12/2022).

Soil core retrieval at MW-200 (4/12/2022).

Hardpan-like till clay from 33-35 feet bgs at MW-200 (4/12/2022).

Hardpan-like till clay from 35-39.5 feet bgs at MW-200 (4/12/2022).

Hardpan-like till clay from 35-39.5 feet bgs at MW-200 (4/12/2022).

Hardpan-like till clay from 35-39.5 feet bgs at MW-200 (4/12/2022).

Till clay from 40-45 feet bgs at MW-200 (4/12/2022).

Hardpan-like till clay from 47-50 feet bgs at MW-200 (4/12/2022).

SB-20 boring location prior to drilling (4/12/2022).

Clay cap (right) and top of refuse (left) at 1.5-3 feet bgs at SB-20 (4/12/2022).

Refuse from 5-10 feet bgs at SB-20 (4/12/2022).

Base of refuse and top of lacustrine sand at 29-30 feet bgs at SB-20 (4/12/2022).

Lacustrine sand at 38 feet bgs at SB-20(4/12/2022).

Very hard till clay from 40-44.5 feet bgs at SB-20 (4/12/2022).

Hardpan-like till clay from 45-50 feet bgs at SB-20 (4/12/2022).

Hardpan-like till clay from 45-50 feet bgs at SB-20 (4/12/2022).

Setting up the rotosonic drill rig at the SB-19 boring location (4/12/2022).

Clay cap (right) and top of refuse (left) from 1.5-2.5 feet bgs at SB-19 (4/12/2022).

Refuse and wood from 5-10 feet bgs at SB-19 (4/12/2022).

Fill sand and underlying refuse from 17-20 feet bgs at SB-19 (4/12/2022).

Refuse from 10-15 feet bgs at SB-19 (4/12/2022).

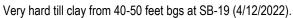
Lacustrine gravelly sand from 30-32 feet bgs at SB-19 (4/12/2022).

Lacustrine gravelly sand/very hard till clay contact at 33.5 feet bgs at SB-19 (4/12/2022).

Very hard till clay from 35-40 feet bgs at SB-19 (4/12/2022).

Very hard till clayey sand-sandy clay from 35-40 feet bgs at SB-19 (4/12/2022).

Very hard till clay from 40-50 feet bgs at SB-19 (4/12/2022).


Very hard till clay from 40-50 feet bgs at SB-19 (4/12/2022).

Very hard till clay from 40-50 feet bgs at SB-19 (4/12/2022).

Tracking through woods to MW-202 location (4/12/2022).

Tracking through woods to MW-202 location (4/12/2022).

Drilling at MW-202 location (4/12/2022).

Lacustrine sandy gravel from 5-7.7 feet bgs at MW-202 (4/12/2022).

Contact of lacustrine sandy gravel (left) and clayey silt (right) at 7.7 feet bgs at MW-202 (4/12/2022).

Very hard till clay from 8.5-10 feet bgs at MW-202 (4/12/2022).

Very hard till clay from 10-15 feet bgs at MW-202 (4/12/2022).

Very hard till clay at 10 feet bgs at MW-202 (4/12/2022).

MW-202 soil cores from 0-30 feet bgs (4/12/2022). Zero feet bgs at top left. 30 feet bgs at lower right.

Very hard till clay from 35-40 feet bgs at MW-202 (4/12/2022).

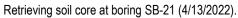
MW-202 soil cores from 20-40 feet bgs (4/12/2022). 20 feet bgs at top left. 40 feet bgs at lower right.

Wooded area around MW-202 (4/13/2022).

Wooded area around MW-202 (4/13/2022).

Wooded area around MW-202 (4/13/2022).

Tracking to SB-21 boring location (4/13/2022)


Drilling at SB-21 (4/13/2022).

Lacustrine sandy gravel at 10 feet bgs at SB-21 (4/13/2022).

Very hard till clay from 15-20 feet bgs at SB-21 (4/13/2022).

Very hard till clay from 15-20 feet bgs at SB-21 (4/13/2022).

Very hard till clay from 15-20 feet bgs at SB-21 (4/13/2022).

Very hard till clay from 20-25 feet bgs at SB-21 (4/13/2022).

Hardpan-like till clay from 25-30 feet bgs at SB-21 (4/13/2022).

Very hard till clay from 20-25 feet bgs at SB-21 (4/13/2022).

Hardpan-like till clay from 25-30 feet bgs at SB-21 (4/13/2022).

Hardpan-like till clay from 30-35 feet bgs at SB-21 (4/13/2022).

Hardpan-like till clay from 30-35 feet bgs at SB-21 (4/13/2022).

Till clay from 35-40 feet bgs (bottom), 25-30 feet bgs (middle), and 15-20 feet bgs (top) at SB-21 (4/13/2022).

Containerized soil cores containing refuse from boring SB-20 (4/14/2022).

Containerized cores containing refuse from boring SB-19 (4/14/2022).

Monitoring well MW-202 (4/14/2022).

Monitoring well MW-200 (4/14/2022).

Monitoring well MW-201 (4/14/2022).

Lacustrine gravelly sand soil sample from 17-20 feet bgs at MW-200 (4/16/2022).

Lacustrine silty sand soil sample from 20-24 feet bgs at MW-201 (4/16/2022).

Lacustrine sandy gravel soil sample from 5-7 feet bgs at MW-202 (4/16/2022).

Lacustrine sandy gravel soil sample from 5-7 feet bgs at MW-202 (4/16/2022).

Till clay soil sample from 25.5-30 feet bgs at MW-200 (4/16/2022).

Till clay soil sample from 25.5-30 feet bgs at MW-200 (4/16/2022).

Till clay soil sample from 25.5-30 feet bgs at MW-200 (4/16/2022).

Till clay soil sample from 37-39.5 feet bgs at MW-200 (4/16/2022).

Till clay soil sample from 37-39.5 feet bgs at MW-200 (4/16/2022).

Till clay soil sample from 29-30 feet bgs at MW-201 (4/16/2022).

Hardpan-like till soil sample (silty-clayey sand) from 39-40 feet bgs at MW-201 (4/16/2022).

Till clay soil sample from 8.5-10 feet bgs at MW-202 (4/16/2022).

Till clay soil sample from 8.5-10 feet bgs at MW-202 (4/16/2022).

Till clay soil sample from 8.5-10 feet bgs at MW-202 (4/16/2022).

Very hard till soil sample (clayey sand) from 34-35 feet bgs at SB-19 (4/16/2022).

Very hard till soil sample (clayey sand) from 34-35 feet bgs at SB-19 (4/16/2022).

Till clay soil sample from 47-49 feet bgs at SB-19 (4/16/2022).

Till clay soil sample from 47-49 feet bgs at SB-19 (4/16/2022).

Till clay soil sample from 45-50 feet bgs at SB-20 (4/16/2022).

Till clay soil sample from 45-50 feet bgs at SB-20 (4/16/2022).

Till clay soil sample from 45-50 feet bgs at SB-20 (4/16/2022).

Till clay soil sample from 23-25 feet bgs at SB-21 (4/16/2022).

Till clay soil sample from 23-25 feet bgs at SB-21 (4/16/2022).

Till clay soil sample from 23-25 feet bgs at SB-21 (4/16/2022).

APPENDIX B
BORING AND MONITORING WELL LOGS

PAGE 1 OF 2

The Mannik & Smith Group, Inc. 2365 Haggerty Road South, Canton, MI 48188 ph: (734) 397-3100 fax: (734) 397-3131

www.manniksmithgroup.com CLIENT City of Mt. Pleasant, MI PROJECT NAME Former Mt Pleasant Landfill RAP Implementation PROJECT NUMBER M3460003 PROJECT LOCATION Mt. Pleasant, MI DATE STARTED 4/12/22 __ COMPLETED <u>4/12/22</u> BORING DIAMETER: 6 inches **DRILLING CONTRACTOR** Cascade Drilling **SURVEY COORDINATES:** 772,179.7 N; 13,015,473.0 E (USSP MI South) TOP OF CASING ELEV.: 759.04 feet NAD83 DRILLING METHOD Rotosonic LOGGED BY DJA CHECKED BY ☐ GROUND WATER ENCOUNTERED DURING DRILLING: 9 FEET BGS NOTES **▼ WATER LEVEL AFTER DRILLING**: N/A SAMPLE TYPE NUMBER LABORATORY SAMPLE ELEVATION (NAD83) RECOVERY (FEET) PID (ppm) GRAPHIC LOG DEPTH DEPTH (FEET) (FEET) MATERIAL DESCRIPTION **REMARKS** WELL DIAGRAM Above-Ground Protective BORINGWELL LOG (PID) - GINT STD US LAB, GDT - 9/6/22 09:54 - W.\PROJECTS\PROJECTS K-O\M3460003\ADMINIDRILLING\BORING LOGS\M34600002 BORING LOGS\M34600002 Surface Elev. = 756 NAD83 0 Concrete Pad
 Brown to Dark Brown SAND and Clayey Sand, trace-little Gravel and Sand for Drainage Wood, moist (FILL) SC 5.0 Bentonite Chips 5.5 750.5 Brown to Dark Brown SAND and Clayey Sand, little-some Wood, little Gravel, moist (FILL) SC 5.0 Wet Concrete Rubble From 9-9.5 Ft. 10 bgs 2" Diameter PVC Riser Filter Sand 15 15.0 Gray Silty fine SAND, trace Gravel, 7.5 wet (Lacustrine Sand) Gray Gravelly SAND, trace-little Silt, Ω. wet (Lacustrine Sand) Oxidized Orange-Brown From Ø 15.5-16.7 Ft. bgs 0 Soil Sample MW-200, 17-20 (SP) Ø 2" Diameter 10-Slot PVC 20 0 Screen 21.0 735.0 Gray Sandy SILT, trace Clay, wet (Lacustrine-Till transition) SC 4 9.5 25.5 730.5 Gray Silty CLAY, trace Sand, moist (Till Clay) Soil Sample MW-200, 25.5-30 (CL) ■ Bentonite Chips

PAGE 2 OF 2

The Mannik & Smith Group, Inc. 2365 Haggerty Road South, Canton, MI 48188 ph: (734) 397-3100 fax: (734) 397-3131 www.manniksmithgroup.com

	CLIE	NT City	of Mt.	Pleas	sant, M	11	PRO	JECT N	NAME	Former Mt Pleasa	nt Landfill RAP Implementation
	PRO.	IECT NU	MBER	R _M34	460003	3	_ PRO	JECT L	OCAT	TON Mt. Pleasant,	MI
İ	DATE	START	ED _4	/12/22	2	COMPLETED 4/12/22	BOR	ING DI	AMETI	ER: 6 inches	
	DRIL	LING CO	NTRA	CTOR	Cas	cade Drilling	SUR	VEY C	OORDI	INATES: 772,179.7	N; 13,015,473.0 E (USSP MI South)
	DRIL	LING ME	THOD	Rot	osonic			OF CA	SING	ELEV.: 759.04 feet	NAD83
	LOG	GED BY	DJA			CHECKED BY	oxtimes Gr	OUND	WATE	R ENCOUNTERED	DURING DRILLING: 9 FEET BGS
- 1		s								AFTER DRILLING:	
ŀ											
GFJ	S DEPTH (FEET)	SAMPLE TYPE NUMBER	RECOVERY (FEET)	GRAPHIC LOG	DEPTH (FEET)	MATERIAL DESCRIPTION	ELEVATION (NAD83)	PID (ppm)	LABORATORY SAMPLE	REMARKS	WELL DIAGRAM
EVZ.						Gray Silty CLAY, trace Sand, moist					
JGS/MI3460UUZ BURING LUGS R	35	SC 5	9.0		33.0	(Till Clay) (continued) Gray Silty-Sandy CLAY, trace Gravel, dry-moist (Hardpan-like till)	723.0				
JJEC I S R-O(M3400003MDIMINIDRIELINGIDOINING EO	40	SC				Till Clay from 39.5-47 ft bgs				Soil Sample MW-200, 37-39.5 (CL)	⋖ Bentonite Chips
3/6/22 U9:34 - W:\PROJECTS\PRO		SC 6	9.1		50.0	Hardpan-like till from 47-50 ft bgs Bottom of borehole at 50.0 feet.	706.0				
INV BORING/WELL LOG (PID) - GINT 31D 03 LAD.GUT						Bottom of poreniole at 30.0 feet.					

PAGE 1 OF 2

The Mannik & Smith Group, Inc. 2365 Haggerty Road South, Canton, MI 48188 ph: (734) 397-3100 fax: (734) 397-3131

www.manniksmithgroup.com CLIENT City of Mt. Pleasant, MI PROJECT NAME Former Mt Pleasant Landfill RAP Implementation PROJECT NUMBER M3460003 PROJECT LOCATION Mt. Pleasant, MI DATE STARTED 4/11/22 __ COMPLETED _4/12/22 **BORING DIAMETER:** 6 inches **DRILLING CONTRACTOR** Cascade Drilling **SURVEY COORDINATES:** 771,328.0 N; 13,015,755.0 E (USSP MI South) TOP OF CASING ELEV.: 764.12 feet NAD83 DRILLING METHOD Rotosonic LOGGED BY DJA CHECKED BY ☐ GROUND WATER ENCOUNTERED DURING DRILLING: 10 FEET BGS NOTES **▼ WATER LEVEL AFTER DRILLING**: N/A SAMPLE TYPE NUMBER LABORATORY SAMPLE ELEVATION (NAD83) PID (ppm) RECOVERY (FEET) GRAPHIC LOG DEPTH DEPTH (FEET) (FEET) MATERIAL DESCRIPTION **REMARKS** WELL DIAGRAM Above-Ground Protective BORINGWELL LOG (PID) - GINT STD US LAB, GDT - 9/6/22 09:54 - W.\PROJECTS\PROJECTS K-O\M3460003\ADMINIDRILLING\BORING LOGS\M34600002 BORING LOGS\M34600002 Surface Elev. = 761.1 NAD83 0 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 Concrete Pad
 TOPSOIL Sand for Drainage 1.5 759.6 Brown Silty SAND, trace-little Gravel, moist (Lacustrine Sand) SC 5.0 Bentonite Chips 5.0 753.1 Tan Silty Fine SAND, moist (Lacustrine Sand) 10 10.0 🗸 751.1 2" Diameter PVC Riser Brown Silty SAND, occasional Gravelly pockets, wet (Lacustrine Sand) Filter Sand 15 10.0 18.0 743.1 Light Grayish-Brown Silty Fine SĂND, tráce Gravel, wet (Lacustrine 2" Diameter 10-Slot PVC 20 Screen Soil Sample MW-201, 20-24 736.6 Gray Silty CLAY, trace Sand, trace SC 4 10.0 Gravel, moist (Till Clay) Soil Sample ■ Bentonite Chips MW-201, 29-30 (CL)

PAGE 2 OF 2

The Mannik & Smith Group, Inc. 2365 Haggerty Road South, Canton, MI 48188 ph: (734) 397-3100 fax: (734) 397-3131 www.manniksmithgroup.com

CLI	ENT	_City	of Mt.	Pleas	sant, M	II	PRO	JECT N	NAME	Former Mt Pleasa	nt Landfill RAP Implementation
PRO	OJE	CT NU	MBER	R _M34	460003	3	PRO	JECT L	LOCAT	Mt. Pleasant,	MI
DA	TE S	TART	ED 4	/11/22	2	COMPLETED _4/12/22	BOR	ING DI	AMETI	ER: 6 inches	
DRI	LLI	NG CC	NTRA	CTOR	Cas	cade Drilling	SUR	VEY C	OORDI	INATES: 771,328.0	N; 13,015,755.0 E (USSP MI South)
DRI	LLII	NG ME	THOD	Rote	osonic		TOP	OF CA	SING	ELEV.: _764.12 feet	NAD83
LO	GGE	D BY	DJA			CHECKED BY	$oxed{igstyle GR}$	ROUND	WATE	ER ENCOUNTERED	DURING DRILLING: 10 FEET BGS
NO.	TES						_ ▼ w/	ATER L	EVEL	AFTER DRILLING:	N/A
S DEPTH	()	SAMPLE TYPE NUMBER	RECOVERY (FEET)	GRAPHIC LOG	DEPTH (FEET)	MATERIAL DESCRIPTION	ELEVATION (NAD83)	PID (ppm)	LABORATORY SAMPLE	REMARKS	WELL DIAGRAM
35 - 35 -		SC 5	10.0			Gray Silty CLAY, trace Sand, trace Gravel, moist (Till Clay) (continued) Hardpan-like till from 34.9-38.5 ft bgs					
40	_				38.5 42.0	Gray Silty-Clayey SAND, trace Gravel, dry (Hardpan-like till)	722.6		X	Soil Sample MW-201, 39-40 (SC-SM)	⊲ Bentonite Chips
45 - 45 - 50 - 50 - 50 - 50 - 50 - 50 -		SC 6	10.0		50.0	Gray Silty CLAY, some Sand, trace-little Gravel, moist (Till Clay)	741 4				
					50.0	Bottom of borehole at 50.0 feet.	711.1				

PAGE 1 OF 2

The Mannik & Smith Group, Inc. 2365 Haggerty Road South, Canton, MI 48188 ph: (734) 397-3100 fax: (734) 397-3131

www.manniksmithgroup.com CLIENT City of Mt. Pleasant, MI PROJECT NAME Former Mt Pleasant Landfill RAP Implementation PROJECT NUMBER M3460003 PROJECT LOCATION Mt. Pleasant, MI DATE STARTED 4/12/22 **COMPLETED** 4/13/22 BORING DIAMETER: 6 inches **DRILLING CONTRACTOR** Cascade Drilling **SURVEY COORDINATES:** 772,211.3 N; 13,014,355.0 E (USSP MI South) DRILLING METHOD Rotosonic TOP OF CASING ELEV.: 746.85 feet NAD83 LOGGED BY DJA CHECKED BY ☐ GROUND WATER ENCOUNTERED DURING DRILLING: 5 FEET BGS **NOTES ▼ WATER LEVEL AFTER DRILLING**: N/A SAMPLE TYPE NUMBER LABORATORY SAMPLE ELEVATION (NAD83) RECOVERY (FEET) PID (ppm) GRAPHIC LOG DEPTH DEPTH (FEET) (FEET) MATERIAL DESCRIPTION **REMARKS** WELL DIAGRAM Above-Ground Protective BORINGWELL LOG (PID) - GINT STD US LAB, GDT - 9/6/22 09:54 - W.\PROJECTS\PROJECTS K-O\M3460003\ADMINIDRILLING\BORING LOGS\M34600002 BORING LOGS\M34600002 Surface Elev. = 744.2 NAD83 0 Concrete Pad TOPSOIL 1.0 743.2 Sand for Drainage Dark Brown Organic Sandy CLAY, moist 2" Diameter PVC Riser SC 2.0 Bentonite Chips 740.2 Brown Silty Fine SAND, trace Gravel, 5.0 ☑ moist 739.2 Gray Sandy GRAVEL, wet (Lacustrine Gravel) Soil Sample Filter Sand MW-202, 5-7 2" Diameter 10-Slot PVC (GW) Screen Ö SC 2 736.5 4.8 Gray Clayey SILT, moist 8.5 735.7 Gray Sandy CLAY, some Silt, Soil Sample trace-little Gravel, moist (Very Hard MW-202, 8.5-10 10 Till Clay) (CL) 15 8.0 20 Bentonite Chips SC 9.0

PAGE 2 OF 2

The Mannik & Smith Group, Inc. 2365 Haggerty Road South, Canton, MI 48188 ph: (734) 397-3100 fax: (734) 397-3131 www.manniksmithgroup.com

C	LIEN	T City	of Mt.	Pleas	ant, M	II	PRO	JECT N	AME	Former Mt Pleasar	nt Landfill RAP Implementation
PI	ROJI	ECT NU	MBER	M34	160003	3	PRO	JECT L	OCAT	TION Mt. Pleasant,	MI
D	ATE	START	ED 4	/12/22		COMPLETED 4/13/22	BOR	ING DI	AMETI	ER: 6 inches	
D	RILL	ING CO	NTRA	CTOR	_Cas	cade Drilling	SUR	VEY C	OORDI	INATES: 772,211.3 I	N; 13,014,355.0 E (USSP MI South)
D	RILL	ING ME	THOD	Rote	osonic		TOP	OF CA	SING	ELEV.: 746.85 feet	NAD83
L	ogg	ED BY	DJA			CHECKED BY	$_{_}$ $oxtime$ GR	OUND	WATE	R ENCOUNTERED	DURING DRILLING: 5 FEET BGS
N	OTE	s					_ <u>▼</u> WA	TER L	EVEL	AFTER DRILLING: _	N/A
	O (FEET)	SAMPLE TYPE NUMBER	RECOVERY (FEET)	GRAPHIC LOG	DEPTH (FEET)	MATERIAL DESCRIPTION	ELEVATION (NAD83)	PID (ppm)	LABORATORY SAMPLE	REMARKS	WELL DIAGRAM
	5	SC 5	10.0		40.0	Gray Sandy CLAY, some Silt, trace-little Gravel, moist (Very Hard Till Clay) (continued) Bottom of borehole at 40.0 feet.	704.2				■ Bentonite Chips

The Mannik & Smith Group, Inc. 2365 Haggerty Road South, Canton, MI 48188 ph: (734) 397-3100 fax: (734) 397-3131 www.manniksmithgroup.com

PAGE 1 OF 2

CLIEN	NT City	of Mt.	Pleas	sant, M	<u> </u>	ROJE	CT NA	ME _	Former	Mt Pleasant Landfill RAP Implementation
PROJ	IECT NU	JMBER	R _M34	460003	Р	ROJE	CT LC	CATIC	ON _Mt.	Pleasant, MI
DATE	START	ED _4	/12/22	2	COMPLETED <u>4/12/22</u> B	ORIN	G DIAI	METEF	R: 6 in	ches
DRILL	LING CO	ONTRA	CTOR	Caso	cade Drilling S	URVE	Y CO	ORDIN	ATES:_	772,079.6 N; 13,014,794.0 E (USSP MI South)
DRILL	LING ME	ETHOD	Rote	osonic	G	ROUN	ND SU	RFACE	ELEV.	: 769.5 feet NAD83
LOGG	SED BY	DJA			CHECKED BY $ abla$	GRO	JND W	VATER	ENCO	UNTERED DURING DRILLING: Not Encountered
NOTE	s					WATE	ER LE	VEL A	FTER D	PRILLING: N/A
O (FEET)	SAMPLE TYPE NUMBER	RECOVERY (FEET)	GRAPHIC LOG	DEPTH (FEET)	MATERIAL DESCRIPTION		ELEVATION (NAD83)	PID (ppm)	LABORATORY SAMPLE	REMARKS
					Brown Silty CLAY, trace-little Sand, trace Gravel, moist (Clay Cap))				
į				2.0			767.5			
5 10 20 25 30 30	SC 1	3.0			Brown, Gray and Black SAND, Clay, Gra Wood, Refuse (FILL)	vel,				
5										
	sc	4.0								
-	2	1.0								
10										
 15										
_ 13_	SC 3	7.5								
-										
20										
25	SC 4	5.0								
-										
30				30.0			739.5			
50	u 1 1		$\sim\sim$	v 00.0	(Continued Nev					1

The Mannik & Smith Group, Inc. 2365 Haggerty Road South, Canton, MI 48188 ph: (734) 397-3100 fax: (734) 397-3131 www.manniksmithgroup.com

PAGE 2 OF 2

- •	CLIE	NT City	of Mt.	Pleas	sant, M	<u> </u>	PROJE	ECT N	AME _	Former	Mt Pleasant Landfill RAP Implementation
Į	PRO.	JECT NU	MBER	R _M34	460003	3	PROJE	ECT LO	CATIC	ON Mt.	. Pleasant, MI
- -	DATE	START	ED <u>4</u>	/12/22	2	COMPLETED 4/12/22	BORIN	IG DIA	METER	R: 6 in	ches
	DRIL	LING CO	NTRA	CTOR	Case	cade Drilling	SURVI	EY CO	ORDIN	ATES:_	772,079.6 N; 13,014,794.0 E (USSP MI South)
- 1	DRIL	LING ME	THOD	Rote	osonic		GROU	ND SU	IRFACE	ELEV	.: 769.5 feet NAD83
- -	LOG	GED BY	DJA			CHECKED BY	\subseteq GRO	UND V	VATER	ENCO	UNTERED DURING DRILLING: Not Encounte
- 1	NOTE	ES					▼ WAT	ER LE	VEL A	FTER D	DRILLING: N/A
-		111									
	O (FEET)	SAMPLE TYPE NUMBER	RECOVERY (FEET)	GRAPHIC LOG	DEPTH (FEET)	MATERIAL DESCRIPTION		ELEVATION (NAD83)	PID (ppm)	LABORATORY SAMPLE	REMARKS
5 - W.\PROJECTS\PROJECTS K-OM3460003ADMINIDRILLINGBORING LOGS\M3460002 BORING LOGS REV2.GPJ	30 - - 35 - 40 - 45 - - - - - - - - - - - - - - - - -	SC 5	8.5		33.5	Gray, Gravelly SAND, moist (Lacustrin Sand) Gray Clayey Sand-Sandy Clay, some trace Gravel, moist (Very Hard Till Clater Clay) Bottom of borehole at 50.0 feet	Silt, ay)	736.0			Soil Sample SB-19, 34-35 (SC) Soil Sample SB-19, 47-49 (CL)
ENV BORING LOG (PID) - GINT STD US LAB.GDT - 9											

ENV BORING LOG (PID) - GINT STD US LAB.GDT - 9/6/22 09:55 - WAPROJECTS/PROJECTS K-OW3460003ADMINDRILLINGBORING LOGS/W3460002 BORING LOGS REV2.GPJ

The Mannik & Smith Group, Inc. 2365 Haggerty Road South, Canton, MI 48188 ph: (734) 397-3100 fax: (734) 397-3131 www.manniksmithgroup.com

PAGE 1 OF 2

CLIE	NT City	of Mt.	Pleas	ant, MI		PROJE	CT NA	ME _	Former	Mt Pleasant Landfill RAP Implementation
PROJ	IECT NU	MBER	M34	60003		PROJE	CT LC	CATIC)N <u>Mt</u> .	Pleasant, MI
					COMPLETED <u>4/12/22</u>		G DIA	METER	R: <u>6 in</u>	ches
DRILI	LING CO	NTRA	CTOR	Caso	ade Drilling	SURVE	Y CO	ORDIN	ATES:_	771,767.6 N; 13,014,829.0 E (USSP MI South)
	LING ME									: _769.5 feet NAD83
		DJA								UNTERED DURING DRILLING: Not Encountered
NOTE	ES					▼ WAT	ER LE	VEL AI	FTER D	RILLING: N/A
O (FEET)	SAMPLE TYPE NUMBER	RECOVERY (FEET)	GRAPHIC LOG	ОЕРТН (FEET)	MATERIAL DESCRIPTION		ELEVATION (NAD83)	PID (ppm)	LABORATORY SAMPLE	REMARKS
					Brown Sllty CLAY, tarce-little Sand, tra Gravel, moist (Clay Cap)	ace				
 5	SC 1	2.8		2.0	Brown, Gray and Black SAND, Clay, C Wood, Refuse (FILL)	Gravel,	767.5			
 10	SC 2	4.0								
15	SC 3	8.3								
	SC 4	7.5	>	29.2	Gray Gravelly SAND (Lacustrine Sand	()	740.3 739.5			

The Mannik & Smith Group, Inc. 2365 Haggerty Road South, Canton, MI 48188 ph: (734) 397-3100 fax: (734) 397-3131 www.manniksmithgroup.com

PAGE 2 OF 2

	CLIE	NT City	of Mt.	Ple	asa	ant, M	<u> </u>	PROJE	CT NA	AME _	Former	Mt Pleasant Landfill RAP Implementation
	PRO	IECT NU	MBER	R _M	346	30003	<u> </u>	PROJE	CT LC	CATIC	N Mt.	Pleasant, MI
	DATE	START	ED 4	/12/:	22		COMPLETED 4/12/22	BORIN	G DIA	METER	R: _6 ind	ches
	DRIL	LING CO	NTRA	СТС	DR .	Caso	cade Drilling	SURVE	Y CO	ORDIN	ATES:_	771,767.6 N; 13,014,829.0 E (USSP MI South)
	DRIL	LING ME	THOD	_R	otos	sonic		GROU	ND SU	RFACE	ELEV.	: _769.5 feet NAD83
	LOG	SED BY	DJA				CHECKED BY	$oxed{oxed}$ GRO	UND V	VATER	ENCO	UNTERED DURING DRILLING: Not Encountered
	NOTE							▼ WAT	ER LE	VEL AI	FTER D	RILLING: N/A
	S DEPTH (FEET)	SAMPLE TYPE NUMBER	RECOVERY (FEET)	GRAPHIC	507	DEPTH (FEET)	MATERIAL DESCRIPTION		ELEVATION (NAD83)	PID (ppm)	LABORATORY SAMPLE	REMARKS
ENV BORING LOG (PID) - GINT STD US LAB.GDT - 9/6/22 09:55 - W.IPROJECTSIPROJECTS K-OIM3460003\ADMINIDRILLING\BORING LOGS\M3460002 BORING LOGS REV2.GPJ	30 	SC 5 SC 6	8.2			37.0 40.0 44.5	Brown Silty Fine SAND, moist (Lacus Sand) Brown Silty Fine SAND with Silt lense moist (Lacustrine Sand) Gray Silty CLAY, some Sand, little Gray Silty CLAY, some Sand, little Gray Clay (Very Hard Till Clay) Gray Sandy CLAY, some Silt, trace Gary-moist (Hardpan-like Till)	es, ravel,	732.5 729.5 725.0			Soil Sample SB-20, 45-50 (CL)
ENV BORING LOG (PID) - GINT STD U												

The Mannik & Smith Group, Inc. 2365 Haggerty Road South, Canton, MI 48188 ph: (734) 397-3100 fax: (734) 397-3131 www.manniksmithgroup.com

PAGE 1 OF 2

CLIENT City of Mt. Pleasant, MI								PROJECT NAME Former Mt Pleasant Landfill RAP Implementation				
PRO	PROJECT NUMBER M3460003 DATE STARTED 4/13/22 COMPLETED 4/13/22 DRILLING CONTRACTOR Cascade Drilling DRILLING METHOD Rotosonic											
DAT												
DRI												
DRI												
LOC	LOGGED BY DJA CHECKED BY							$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				
NO	NOTES							▼ WATER LEVEL AFTER DRILLING: N/A				
		111										
O (FEET)		SAMPLE TYPE NUMBER	RECOVERY (FEET)	GRAPHIC	DEPTH (FEET)	MATERIAL DESCRIPTION		ELEVATION (NAD83)	PID (ppm)	LABORATORY SAMPLE	REMARKS	
				7 × 15.	0.0	TOPSOIL		746.0				
V2.GF	-				1.0	Light Brown Clayey SILT, moist		745.5 744.8				
S.E.	-	80			1.7	Brown Silty SAND, moist Brown Clayey SAND, trace Gravel an	ıd.	744.0				
ő -	4	SC 1	3.0		3.0	Wood, moist		743.5				
RING						Light Brown Silty CLAY, trace Sand, r	noist					
08 08 05						abla						
ENV BORING LOG (PID) - GINT STD US LAB.GDT - 9/6/22 09:55 - W:PROJECTS/PROJECTS K-OM/3460003ADMINDRILLING/BORING LOGS/M3460002 BORING LOGS REV2.GFU 0						Becomes wet at 5 Ft. bgs						
S/M34					7.0			700.5				
) - 	-	SC 2	3.0	0	7.0	Gray Sandy GRAVEL, wet (Lacustrine	<u></u> е	739.5				
- NG	-	2	3.0	. 0		Gravel)						
86 -	4			0								
<u>10</u>				, O								
ORII				. 0								
N N N				0				721 5				
)03/A -	1				12.0	Gray Sandy CLAY, some Silt, trace G	Gravel,	734.5				
34600	-[moist (Very Hard Till Clay)						
Ĭ O	4											
င္ခါ တ <u> 15</u>		SC 3	9.5									
)EC		3	5.5									
JPR(1											
	1											
<u>&</u> -	$-\ $											
<u>*</u> -	4											
<u> </u>												
/22 0												
9/6 -												
- GDI	1											
<u>8</u> -	-											
S) _	4									X	Soil Sample SB-21, 23-25 (CL)	
25		SC 4	10.0							\angle		
<u></u>		4				Becomes Hardpan-like till at 25 Ft. bo	js –					
90	1											
- NG	-											
<u>8</u> -	-											
≧ 30					30.0			716.5				

BORING ID: SB-21

PAGE 2 OF 2

CL	ENT City	of Mt.	Pleas	ant, M	I	PROJE	ECT NA	AME _	Former	Mt Pleasant Landfill RAP Implementation				
PR	PROJECT NUMBER M3460003							PROJECT LOCATION _Mt. Pleasant, MI						
DA	TE START	ED 4	/13/22		COMPLETED 4/13/22	BORIN	G DIA	METER	R: _6 in	ches				
								SURVEY COORDINATES: 771,699.5 N; 13,014,311.0 E (USSP MI South)						
							GROUND SURFACE ELEV.: 746.5 feet NAD83							
LOGGED BY DJA CHECKED BY						$oxed{igstyle \Box}$ GRO	UND V	VATER	ENCO	UNTERED DURING DRILLING: 5 FEET BGS				
							ER LE	VEL A	FTER D	RILLING: N/A				
S DEPTH	SAI	RECOVERY (FEET)	GRAPHIC LOG	DEPTH (FEET)	MATERIAL DESCRIPTION		ELEVATION (NAD83)	PID (ppm)	LABORATORY SAMPLE	REMARKS				
ENV BORING LOG (PID) - GINT STD US LAB.GDT - 9/6/22 09:55 - W:/PROJECTS/PROJECTS K-O/M3460003/ADMIN/DRILLING/BORING LOGS/M3460002 BORING LOGS REV2.GPJ	SC 5	10.0		40.0	Gray Sandy CLAY, some Silt, trace G moist (Hardpan-like till) Bottom of borehole at 40.0 fee		706.5							

APPENDIX C FIELD SAMPLING FORMS

Smith GREATIVE SPIRIT.	SAMPLE LOCATION: MW-101
DATE: 1/0/ DI	PROJECT #: M3460003 SITE NAME: MT. PLEASANT LAND FILL
PERSONNEL: DA PH	SITE ADDRESS: 1303 N. FRANKLIN
OBSERVERS:	_ SITE CONDITIONS:
DEPTH OF WELL:	DEPTH TO WATER LEVEL: 3.76 TOC
SCREEN LENGTH:	WELL DIAMETER:
TUBING TYPE: HDPE	CASING TYPE: PVC
MONITORING EQUIPMENT: HDPE TUB	ING, PERISMUTIC PUMP, HORIBA

TIME	WATER LEVEL (<0.3 feet once stabilized)	TEMP. (°F/°C)	Ph +/- 0.1	ORP (mV)	COND. (mS/cm) +/- 3%	TURB. (NTU) ² +/- 10%	DO (mg/L) ¹ +/- 10%	VOLUME PURGED (Gallons)	PUMP RATE (ml/min)	NOTES
1992	4.12	58.9	6.88	-21	1,47	46,1	9.46			
1443	4.14	55.6	6.92	-33	1,58	48.5	3.99			
1448	4.17	54.8	6,94	-38	1,59	3,3	3.17			
1451	4.20	54.7	6.42	-40	1.57	0.9	2.86			
1454	4,21	5413	6.90	-41	1,59	0.0	2,76			
1457										
1500										

SAMPLE ID: MW- 10/		
SAMPLE DATE: 5-16-77		
SAMPLE TIME: 1500		
Notes:		

¹ - 10% for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

² - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

Smith GROUP TECHNICAL SKILL. GREATIVE SPIRIT.	SAMPLE LOCATION: MW-102
DATE: 5/16/22	PROJECT #: M3460003
PERSONNEL: UNP, JUG OBSERVERS:	SITE ADDRESS: 1303 N. FRANKLIN SITE CONDITIONS:
	DEPTH TO WATER LEVEL: 6.87
SCREEN LENGTH:	WELL DIAMETER:
TUBING TYPE: HDPE TO MONITORING EQUIPMENT: HDPE TO	_ CASING TYPE: PVC 11BING, PERISTAUTIC PUMP, HORIGA

TIME	WATER LEVEL (<0,3 feet once	TEMP. (°F/°C)	Ph	ORP (mV)	COND. (mS/cm)	TURB. (NTU) ²	DO (mg/L) ¹	VOLUME PURGED	PUMP RATE	NOTES
	stabilized)	+/- 3%	+/- 0.1	+/- 10 mV	+/- 3%	+/- 10%	+/- 10%	(Gallons)	(ml/min)	
1431	6.87	53.2	7.39	75	2.07	516	9.22		200	
1434		50.4	7.24	34	2.33	89.3	5.42			
1437		49.7	7.24	-4	2.39	41.0	3.79			
1446		48.5	7.22	-37	7.43	33.1	269			
1443		48.1	7.21	-44	245	22.4	238			
1446		40,1	7.20	-48	2.46	18.3	2.24			
1449										
1452										
MSS										
1458	1									
1501										

SAMPLE ID: Wes -107
SAMPLE DATE: SILLO/22
SAMPLE TIME: 1446
Notes: Began Ruging @ 1428
Supoblamed but couldn't fit taking & WLM in Prc
3

¹ - 10% for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

 $^{^{2}}$ - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

Smith GROUP TECHNICAL SKILL. CREATIVE SPIRIT.	SAMPLE LOCATION: MW-103
DATE: 516122	PROJECT #: M3460003
PERSONNEL: LMR, TOG	SITE NAME: MT. PLEASANT LAND FILL SITE ADDRESS: 1303 N. FRANKLIN
OBSERVERS:	SITE CONDITIONS:
DEPTH OF WELL:	DEPTH TO WATER LEVEL: 22001
SCREEN LENGTH:	WELL DIAMETER:
TUBING TYPE: HDPE	CASING TYPE: PVC
MONITORING EQUIPMENT: HOPE TV	BING, PERSTRUTIC PUMP, HORIBA

TIME	WATER LEVEL (<0.3 feet once	TEMP. (°F/°C)	Ph	ORP (mV)	COND. (mS/cm)	TURB. (NTU) ²	DO (mg/L) ¹	VOLUME PURGED	PUMP RATE	NOTES
	stabilized)	+/- 3%	+/- 0.1	+/- 10 mV	+/- 3%	+/- 10%	+/- 10%	(Gallons)	(ml/min)	
233	2.42'	62.0	7.14	-4	1.59	175	13.20	5	200	
1236	2.10	57.1	7.28	-10	1.15	522	6.92			
1239	2.11	56.4	7.42	1	1.08	53.8	605			
1242	2.11	54.4	735	-8	1.24	44.3	4.83			
1245	2.11	54.3	7.31	-13	1.33	47.7	3.14			
1248	2111	54.2	7.28	-16	1.51	48.4	233			
1251										
1254										
1257										
1300										

SAMPLE ID: MW-103
SAMPLE DATE: 5/16/22
SAMPLE TIME: 1249
Notes: Been Proman 12:30
Hyo meter mer Roma w/ fubing - SO will leave WL constant
after fral pumping measurement
1 40% founding greater than 0.5 mg/l is the poly

¹ - 10% for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

² - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

Mannik Smith GROUP	SAMPLE LOCATION: MW-104
DATE: 5 / 10 / L	PROJECT #: M3460003 SITE NAME: MT. PLEASANT LAND FILL
PERSONNEL: DA PH OBSERVERS:	SITE ADDRESS: 1303 N. FRANKLIN SITE CONDITIONS:
DEPTH OF WELL:	DEPTH TO WATER LEVEL: 5.79
SCREEN LENGTH: TUBING TYPE:	WELL DIAMETER: CASING TYPE: PVC
MONITORING EQUIPMENT: HOPE TVE	ING, PERISTALTIC PUMP, HORIGA

TIME	WATER LEVEL (<0.3 feet once	TEMP. (°F/°C)	Ph	ORP (mV)	COND. (mS/cm)	TURB. (NTU) ²	DO (mg/L) ¹	VOLUME PURGED	PUMP RATE	NOTES
	stabilized)	+/- 3%	+/- 0.1	+/- 10 mV	+/- 3%	+/- 10%	+/- 10%	(Gallons)	(ml/min)	
1249	5,61	53.9	7,09	13	0.852	21.5	9.86			
1252	5.81	81.5	7,01	-26	6841	0.0	4.49			
1255	5.82	50.6	6.99	40	0.844	0.0	3.77			
1258	5.82	50.3	6.98	-45	0.646	0.0	3,56			
1301	5,62	50,5	6.97	-49	0.848	0.0	3,40			
1304										
1307										
				1 1						

SAMPLE ID:		
SAMPLE DATE: 5-16-22		
SAMPLE TIME: 1302		
Notes:		

¹ - 10% for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

² - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

Mannik Smith GROUP	TECHNICAL SKILL. CREATIVE SPIRIT.	AMPLE LOCATION: $MW - 105$
DATE: 5/10/2000	S	ROJECT#: M3460003 TE NAME: MT. PLEASANT LAND FILL
PERSONNEL: DA/PH		TE ADDRESS: 1303 N. FRANKLIN
OBSERVERS:		TE CONDITIONS:
DEPTH OF WELL:	D	EPTH TO WATER LEVEL: 4,94 / TOC
SCREEN LENGTH: TUBING TYPE:HDPE		ASING TYPE: PVC
MONITORING EQUIPMENT:	HDPE TVB	ASING TYPE: PVC INC. PERISTIPLTIC PUMP HORIBA

TIME	WATER LEVEL (<0.3 feet once	TEMP. (°F/°C)	Ph	ORP (mV)	COND. (mS/cm)	TURB. (NTU) ²	DO (mg/L) ¹	VOLUME PURGED	PUMP RATE (ml/min)	NOTES
	stabilized)	+/- 3%	+/- 0.1	+/- 10 mV	+/- 3%	+/- 10%	+/- 10%	(Gallons)		
1324	5.33	60.9	7,15	-49	0.837	51.7	4.38		7200	
1327	5,38	62.3	7.07	-69	0.855	26.7	2.62			
1330	5,38	59.5	7.07	-77	1,19	15.0	7.70			
1333	5,38	58.5	7,05	-81	1,28	10.6	2.61			
1336	5,41	56.2	7,03	-84	1,33	9.0	2.51			
1339		5812	7,03	-85	1,34	8.5	2,45			
1342										

SAMPLE ID: MW-105	
SAMPLE DATE: 5-16-22	
SAMPLE TIME: 1342	
Notes:	_
	_

¹ - 10% for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

² - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

Smith TECHNICAL SKILL. GREATIVE SPIRIT,	SAMPLE LOCATION: MW-106
DATE: 5/16/22	PROJECT #: M3460003
	SITE NAME: MT. PLEASANT LANDFILL
PERSONNEL: UNC JOG	SITE ADDRESS: 1303 N. FRANKLIN
OBSERVERS:	SITE CONDITIONS: 720/ Surry
DEPTH OF WELL: SCREEN LENGTH:	DEPTH TO WATER LEVEL: CONTROL OF
TUBING TYPE: HDPE	CASING TYPE: PVC
MONITORING EQUIPMENT: HDPE TUBA	NG, PERISTALTIC PUMP, HORIBA

TIME	WATER LEVEL (<0.3 feet once stabilized)	TEMP. (°F/°C)	Ph	ORP (mV)	COND. (mS/cm)	TURB. (NTU) ²	DO (mg/L) ¹	VOLUME PURGED	PUMP RATE	NOTES
	Stabilized)	+/- 3%	+/- 0.1	+/- 10 mV	+/- 3%	+/- 10%	+/- 10%	(Gallons)	(ml/min)	
1338	6.26	53.4	7.37	51	1.84	42.4	5.67		200	
1341	6.27	53.0	7.37	7	1.75	30.8	3.14			
1344	6.24'	527	7.36	-18	170	24.2	271			
1347	6.26'	52.8	7.35	-Z8	1.69	20.8	244			
1350	6.26	52.8	7.34	-37	1.69	18.7	2.33			
1353										
1356										
1359										
1402										

SAMPLE ID: MW-166			
SAMPLE DATE: S/16/22			
SAMPLE TIME: 1410			
Notes: Began Progras (a)	1335		
3 3 -			

 $^{^{1}}$ - 10% for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

 $^{^{2}}$ - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

Mannik Smith GROUP	SAMPLE LOCATION: MW- (OK
DATE: _5/16/22	PROJECT #: M3460003
PERSONNEL: JOG, LITTP OBSERVERS:	SITE ADDRESS: 1303 N. FRANKLIN SITE CONDITIONS: 72°/ SURVEY
DEPTH OF WELL:	DEPTH TO WATER LEVEL: 7-70 TOC
SCREEN LENGTH: TUBING TYPE:HDPE	WELL DIAMETER:
MONITORING EQUIPMENT: HDPE TVB	NE, PERISTAUTIC PUMP, HORIBA

TIME	WATER LEVEL (<0.3 feet once	TEMP. (°F/°C)	Ph	ORP (mV)	COND. (mS/cm)	TURB. (NTU) ²	DO (mg/L) ¹	VOLUME PURGED	PUMP RATE	NOTES
	stabilized)	+/- 3%	+/- 0.1	+/- 10 mV	+/- 3%	+/- 10%	+/- 10%	(Gallons)	(ml/min)	
653	8.24	51.4	7.13	4	1.95	580	3.97	Q.10		
(056	0.85	47.0	7.11	33	2.32	397	5.81	6.20		
1059	4.60	48.0	7-10	58	7.43	366	4.91	4-36		
	1									

SAMPLE ID: MW-108	
SAMPLE DATE: 5/16/22	
SAMPLE TIME:	
Notes: Began Puring @ 10:50 1050	
well paper by @ 10:58	

¹ - 10% for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

 $^{^{2}}$ - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

1	<u> </u>		SITE ADDR	ESS: /303					
L: TH: H DPE			DEPTH TO WELL DIAM CASING TY	WATER LEVEL METER: 'PE:	4.7			I WATE	ER QUALITY MO
WATER LEVEL (<0.3 feet once	TEMP. (°F/°C)	Ph	ORP (mV)	COND. (mS/cm)	TURB. (NTU) ²	DO (mg/L) ¹	VOLUME	PUMP	NOTES
stabilized)	+/- 3%	+/- 0.1	+/- 10 mV	+/- 3%	+/- 10%	+/- 10%	(Gallons)	(ml/min)	NOTES
	16.4	6.04		7,700					
	15.3	6,42	- 1	1188					
	12.9	6,55	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	12.7	6,64		886					
	L:HDPE QUIPMENT: WATER LEVEL (<0.3 feet once	UIPMENT: D/5P05A8 WATER LEVEL (<0.3 feet once stabilized) 1/6 1 4 1/5 . 3 1/2 . 9	L:	DEPTH TO WELL DIAM CASING TY QUIPMENT: D/5P05A846 HDPE BAILE WATER LEVEL (<0.3 feet once stabilized) +/- 3% +/- 0.1 -/6 14 -/6 04 -/5 , 3 -/6 142 -/2 19 -/5 55	DEPTH TO WATER LEVEL WELL DIAMETER: H DPE CASING TYPE: COND. (mS/cm) 16.3 6.42 7,700 15.3 6.42 /188 12.9 6.55 945	DEPTH TO WATER LEVEL: 4, 7. TH: WELL DIAMETER:	DEPTH TO WATER LEVEL: 4.72 8. TH:	DEPTH TO WATER LEVEL: 4.72 BTOC TH: WELL DIAMETER: CASING TYPE: QUIPMENT: D/5P05A846 HDPE BAINER, NYLON ROPE, NETRAMETER WATER LEVEL (<0.3 feet once stabilized) +/- 3% +/- 0.1 +/- 10 mV +/- 3% +/- 10% +/- 10% (Gallons) 16.4 6.04 7,700 15.3 6.42 //88 12.9 6.55 945	DEPTH TO WATER LEVEL: 4.72 BTOC WELL DIAMETER:

¹ - 10% for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

 $^{^{2}}$ - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

Smith GROUP	SAMPLE LOCATION: MW-200
TE: K / / / / / / / / / / / / / / / / / /	PROJECT #: M3460003
no lou	SITE NAME: MT. PLEASANT LANDFILL
RSONNEL: UR PH	SITE ADDRESS: 1303 N. FRANKLIN
SERVERS:	SITE CONDITIONS:
PTH OF WELL:	DEPTH TO WATER LEVEL: 11,50 TOC
REEN LENGTH:	WELL DIAMETER:
IBING TYPE: HDPE	CASING TYPE: PVC

TIME (<0.3	WATER LEVEL (<0.3 feet once	TEMP. (°F/°C)	Ph	ORP (mV)	COND. (mS/cm)	TURB. (NTU) ²	DO (mg/L) ¹	VOLUME PURGED	PUMP RATE	NOTES
	stabilized)	+/- 3%	+/- 0.1	+/- 10 mV	+/- 3%	+/- 10%	+/- 10%	(Gallons)	(ml/min)	
1536	11,70	59,6	8,13	-147	2.80	155	8,31		2200	
1539	11.68	56.3	7,62	-159	2,16	143	3.30			
1543	11.69	57.6	7,29	-129	1,90	123	2.67			
1545	11,68	57,4	7,19	-117	1.84	123	7.47			
1548	11,68	57,3	7.14	-112	1,80	103	2,32			
1551	11,68	57,4	7.12	-110	1,78	81,3	7,23			

SAMPLE ID:	MW-200		
SAMPLE DATE:	5-16-2022		
SAMPLE TIME:_	1555	0 (-11	11. 100
Notes:	DUF + FIELD	BLANK COLLECTED	AT MU-LOO

¹ - 10% for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

² - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

Smith GREATIVE SPIRIT.	SAMPLE LOCATION: MW-201
DATE: 1 16 177	PROJECT #: M3460003 SITE NAME: MT. PLEASANT LAND FILL
PERSONNEL: NG POH	SITE ADDRESS: 1303 N. FRANKLIN
OBSERVERS:	SITE CONDITIONS:
DEPTH OF WELL: SCREEN LENGTH:	WELL DIAMETER: 2"
TUBING TYPE: HDPE	CASING TYPE: PVC
MONITORING EQUIPMENT: HOPE TOOM	NG, PERISTRUTIC PUMP, HORIBA

TIME	WATER LEVEL (<0.3 feet once	TEMP. (°F/°C)	Ph	ORP (mV) +/- 10 mV	mV) COND. (mS/cm)	TURB. (NTU) ²	DO (mg/L) ¹	VOLUME PURGED	PUMP RATE (ml/min)	NOTES
	stabilized)	+/- 3%	+/- 0.1		+/- 3%	+/- 10%	+/- 10%	(Gallons)		
160	57.6	57.6	7.19	-197	1.61	76.1	9.16	4.1		
1624	17.15	53.3	7.32	-288	1.46	9.2	3.36	Ø. 5		
1627	12.15	57.7	7.24	-345	1.45	5.6	7.67	Ø.5		
1630	12.15	52.6	7.74	-360	1.45	3.3	7.55	0.6		
1633	12.15	57.5	7.30	-385	1.44	1.4	7.44	0.7		
1636	12:15	52:1	7.33	-400	1.44	1.2	7.39	8.8		
1639	17.15	57.1	7.36	-428	1.44	0.4	2.36	0.9		
				7						

SAMPLE ID: MW ZOL		
SAMPLE DATE: 5/16/22		
SAMPLE TIME: 1645		
Notes:		
Sapre @ 1645		

^{1 - 10%} for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

² - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

Smith GREATIVE SPIRIT.	SAMPLE LOCATION: MW- 252
DATE: 5/16/22	PROJECT #: M3460003
	SITE NAME: MT. PLEASANT LAND FILL
PERSONNEL: DIMP, JOG	SITE ADDRESS: 1303 N. FRANKLIN
OBSERVERS:	SITE CONDITIONS: 720/Sunny
DEPTH OF WELL:	DEPTH TO WATER LEVEL: 4.26
SCREEN LENGTH:	WELL DIAMETER: 2"
TUBING TYPE: HDPE	CASING TYPE: PVC
MONITORING EQUIPMENT: HPIE TUB	ING, PERISTALTIC PUMP, HORIGA

TIME (<0.3	WATER LEVEL (<0.3 feet once stabilized)	TEMP. (F)°C)	Ph	ORP (mV)	COND. (mS/cm)	TURB. (NTU) ²	DO (mg/L) ¹	VOLUME PURGED	PUMP RATE	NOTES
	Stabilized)	+/- 3%	+/- 0.1	+/- 10 mV	+/- 3%	+/- 10%	+/- 10%	(Gallons)	(ml/min)	
1126	4.30	54.5	7.03	213	2.42	383	8,07		200	
1129	4.30	51-7	6.91	161	2.53	171	7.56			
1132	4.28	50.9	6.88	9	2.65	97.5	5.13			
1135	4.29	50.7	6.89	-29	2.68	73.6	3.65			
1138	4.29	50.7	6.89	-45	2.69	49.6	2.77			
1141	4.29	50:5	6.90	-51	2-71	39.7	2.89			
1144					\cap					
1147				/						
1150										
	7									

SAMPLE ID: YW - 202	
SAMPLE DATE: S/16/22	
SAMPLE TIME: 1145	
Notes: Becan Pursine @ 1723	
3	

¹ - 10% for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

 $^{^{2}}$ - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

Smith GROUP TECHNICAL SKILL. GROUP	SAMPLE LOCATION: MW-9-20
DATE: 5/16/22	PROJECT#: M3460003
	SITE NAME: MT. PLEASANT LAND FILE SITE ADDRESS: 1303 N. FRANKLIN
PERSONNEL: TO G	SITE ADDRESS: 1303 N. FRANKLIN
OBSERVERS:	SITE CONDITIONS: 71% Sunve
DEPTH OF WELL:	DEPTH TO WATER LEVEL: 6.59
SCREEN LENGTH:	WELL DIAMETER:
TUBING TYPE: HDPE	CASING TYPE: PVC
MONITORING EQUIPMENT: HDPE TYON	NG PERISTALTIC PUMP, HORIGA

TIME WATER LEVEL (<0.3 feet once stabilized)	(<0.3 feet once	TEMP. (°F/°C)	Ph	ORP (mV)	COND. (mS/cm)	TURB. (NTU) ²	DO (mg/L) ¹	VOLUME PURGED	PUMP RATE	NOTES
	+/- 3%	+/- 0.1	+/- 10 mV	+/- 3%	+/- 10%	0% +/- 10%	(Gallons)	(ml/min)		
15:12		52.4	7.27	-41	1.23	98.1	4.57		200	
1515		53.1	7.31	-40	1.24	88.5	5.08			
1518										
1521 1524										
1524										
1527		- 11								
1530						-				
1533										
1536										
1539										

SAMPLE ID: MW-9-ZO
SAMPLE DATE: SILGIZZ
SAMPLE TIME:
Notes: Began Russing @ 15:10
west dr @ 1516

¹ - 10% for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

 $^{^{2}}$ - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

Smith GROUP TECHNICAL SKILL. GREATIVE SPIRIT.	SAMPLE LOCATION: MW-10-20
DATE: 5/16/702	PROJECT #: M3460003
PERSONNEL: UMP, JOG	SITE NAME: MT. PLEASANT LANDFILL SITE ADDRESS: 1303 N. FRANKLIN
OBSERVERS:	_ SITE CONDITIONS: _70°/Sunny
DEPTH OF WELL:	DEPTH TO WATER LEVEL: 5.29
SCREEN LENGTH:	WELL DIAMETER:
TUBING TYPE: HDPE	CASING TYPE: PVC
MONITORING EQUIPMENT: HDPE TO	BING, PERISTALTIC PUMP, HORIBA

TIME	WATER LEVEL (<0.3 feet once	TEMP. (°F/°C)	Ph	ORP (mV)	COND. (mS/cm)	TURB. (NTU) ²	DO (mg/L) ¹	VOLUME PURGED	PUMP RATE	NOTES
	stabilized)	+/- 3%	+/- 0.1	+/- 10 mV	+/- 3%	+/- 10%	+/- 10%	(Gallons)	(ml/min)	
1532	5.71'	54.5	7.30	-28	1.43	297	8.91		200	
1535	5.68'	51.1	7.31	-46	1.98	208	5.14			
1538	5.67	50.1	7.35	-68	2.14	138	2.78			
1541	5.67	49.7	7.34	-78	215	80.5	2.13			
1544	5.68'	49.5	7.33	-83	216	51.4	1.94			
1547	5.691	49,1	7.32	-87	217	38.6	1.84			
1550	5,691	48.9	7.32	-89	2.17	31.6	1.75			
1553	5.691	48.8	7.31	-92	2.18	28.7	1.71			
1556										
1559										
1602										
	61									

SAMPLE ID: 10-26	
SAMPLE DATE: 5/16/22	
SAMPLE TIME: 1553	
Notes: Began Pureng @ 1530	
3 - 3]	

 $^{^{1}}$ - 10% for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

 $^{^2}$ - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

Stabilized +/-3%	ATE: 5/	DA/H	P		SITE NAME	#: <u>M346</u> :: <u>MT. 1</u> :: <u>130</u>	OOO3 DLEASA	NT LAN	OFILL		
TIME WATER LEVEL (<0.3 feet once stabilized)	PTH OF WE	ELL: GTH: : _ <i>HDPE</i>			DEPTH TO	WATER LEVEL			0.		
035 6.78 55.7 7.07 -49 1.82 196 266 200 038 6.69 56.1 7.14 -94 1.80 180 7.01 041 6.69 55.3 7.15 -105 1.83 179 5.00 044 6.70 54.5 7.13 -108 1.84 195 4.04 047 6.70 54.6 7.13 -109 1.84 193 3.79				Ph	ORP (mV)				VOLUME	PUMP	
038 6.69 56.1 7.14 -94 1.80 180 7.01 041 6.69 55.3 7.15 -105 1.83 179 5.00 044 6.70 54.5 7.13-108 1.84 195 4.04	TIME	(<0.3 feet once	TEMP. (°F/°C)	- 10	(,	(mS/cm)	(NTU) ²	(mg/L) ¹		RATE	NOTES
041 669 55,3 7.15 -105 1.83 179 5.00 044 6.70 54.5 7.13-108 1.84 195 4.04 047 6.70 54.6 7.13-109 1.84 193 3.79	TIME 055	(<0.3 feet once	+/- 3%	+/- 0.1	+/- 10 mV	+/- 3%	+/- 10%	+/- 10%		RATE (ml/min)	NOTES
044 6.70 54.5 7.13-108 1,84 195 4.04	035	(<0.3 feet once	+/- 3% 55. 7	+/- 0.1	+/- 10 mV	+/- 3%	+/- 10%	+/- 10% 2066		RATE (ml/min)	NOTES
047 6,70 54,6 1,13-109 1,84 193 3,79	035	(<0.3 feet once stabilized)	+/-3% \$5.7 \$6.1	+/- 0.1	+/- 10 mV -49	+/-3%	+/- 10% 196 180	+/- 10% 2065 7.01		RATE (ml/min)	NOTES
1050	035	(<0.3 feet once stabilized) 6.78 6.69	+/-3% \$5.7 \$6.1 \$5,3	+/- 0.1	+/- 10 mV -49 -99 -los	+/-3% 1.62 1.80	+/- 10% 196 180	+/- 10% 2086 7.01 5.00		RATE (ml/min)	NOTES
	035 038 1041 1047	(<0.3 feet once stabilized) 6.78 6.69 6.69	+/-3% \$5.7 \$6.1 \$5,3 \$4.5	+/-0.1 7.07 7.14 7.15 7.13	+/- 10 mV -49 -99 -105 -108	+/-3% 1.82 1.80 1.83 1.89	+/- 10% 196 180	+/- 10% 2065 7.01 5.00 4.09		RATE (ml/min)	NOTES

SAMPLE ID:	MW-14-20
	5-16-22
SAMPLE TIME:_	055

1 - 10% for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

Notes:

² - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

Mannik Smith GROUP	TECHNICAL SKILL. CREATIVE SPIRIT.	SAMPLE LOCATION: MW-15-20
DATE: 5 / 6 / D		PROJECT#: <u>M3460003</u>
PERSONNEL: AUG		SITE NAME: MT. PLEASANT LAND FILL SITE ADDRESS: 1303 N. FRANKLIN
OBSERVERS:		SITE CONDITIONS:
DEPTH OF WELL:		DEPTH TO WATER LEVEL: 5.4/
SCREEN LENGTH:		WELL DIAMETER:
TUBING TYPE: HDPE		CASING TYPE: PVC
MONITORING EQUIPMENT:	HOPE TUDI	NG, PERISTRUTIC PUMP, HORIBA

TIME	WATER LEVEL (<0.3 feet once	TEMP. (Ff°C)	Ph	ORP (mV)	COND. (mS/cm)	TURB. (NTU) ²	DO (mg/L) ¹	VOLUME PURGED	PUMP RATE	NOTES
	stabilized)	+/- 3%	+/- 0.1	+/- 10 mV	+/- 3%	+/- 10%	+/- 10%	(Gallons)	(ml/min)	
0957	5.36	31.5	7-69	178	1.59	रिक	6-21	0.10		
1094	5.34	57.00	7.04	27	1.58	279	4.40	0.10		
1443	5.34 5.34	57.7	7.47	-17	1.57	239	3.48	4.30		
1946	5.34	53.3	7.42	-25	1.57	269	3,15	4.40		
1409	5.34	53.6	702	-24	1.59	184	2.98	Ø.50		
1012	5.35	53.8	742	-32	1.63	109	7.85	0.66		
									-	
	11	F								

SAMPLE ID: NU 15-20			
SAMPLE DATE: 6/6/2			
SAMPLE TIME: 1025			
Notes: Stitul pure	@ 9:56		
DEAS Smale	l @ 1030		

¹ - 10% for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

 $^{^{2}}$ - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

SONNEL:	<u>16 20</u> 22 <u>D</u> A			PROJECT #: SITE NAME: SITE ADDRE _ SITE CONDI						
REEN LEN	ELL: GTH: :: EQUIPMENT:	2		WELL DIAME	Water Level Eter: Pe:		<u>'</u>			
	WATER LEVEL	TEMP (95/90)	Dh	ORP (mV)	COND.	TURB.	DO	VOLUME	PUMP	
TIME	(<0.3 feet once	TEMP. (°F/°C)	Ph	ORP (IIIV)	(mS/cm)	(NTU) ²	(mg/L) ¹	PURGED	RATE	NOTES
TIME		+/- 3%	+/- 0.1	+/- 10 mV	(mS/cm) +/- 3%	(NTU) ² +/- 10%	(mg/L) ¹ +/- 10%			NOTES
TIME	(<0.3 feet once	1	0.00	- V-00-7				PURGED	RATE	NOTES
TIME	(<0.3 feet once	1	0.00	- V-00-7				PURGED	RATE	NOTES
TIME	(<0.3 feet once	1	0.00	- V-00-7				PURGED	RATE	NOTES

SAMPLE II	D:						
SAMPLE D	ATE:						
SAMPLE T	IME:						
Notes:	STATIC	WATER	LEVEL	ONLY-NO	GROUNDWATER	SAMPLE	Collected.

¹ - 10% for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

 $^{^{2}}$ - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

TE: 5	DA	A.M.		PROJECT #: M3460003 SITE NAME: FORMER MT. PIERSANT LAND FILL SITE ADDRESS: SITE CONDITIONS:							
REEN LEN BING TYPE	ELL: GTH: E: EQUIPMENT:			DEPTH TO WATER LEVEL: 6.76 ' WELL DIAMETER: CASING TYPE:							
TIME	WATER LEVEL (<0.3 feet once stabilized)	TEMP. (°F/°C)	Ph	ORP (mV)	COND. (mS/cm)	TURB. (NTU) ²	DO (mg/L) ¹	VOLUME PURGED	PUMP RATE	NOTES	
	Stabilized)	+/- 3%	+/- 0.1	+/- 10 mV	+/- 3%	+/- 10%	+/- 10%	(Gallons)	(ml/min)		
							1				
	1							-			
			-								
		4									
IPLE DATE IPLE TIME:	TATIC WAT		L ONL	Y-NO	GROWN	DWATTER	Spryp	ue (a)	VICTED.		

¹ - 10% for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

² - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

SONNEL	DA	A.M.		PROJECT #: M3460003 SITE NAME: FORMER MT. PIERSANT LAND FILL SITE ADDRESS: SITE CONDITIONS:							
REEN LEN BING TYPE	ELL: GTH: E: EQUIPMENT:	- -		DEPTH TO WATER LEVEL: 5.20 WELL DIAMETER:							
TIME	WATER LEVEL (<0.3 feet once stabilized)	TEMP. (°F/°C)	Ph	ORP (mV)	COND. (mS/cm)	TURB. (NTU) ²	DO (mg/L) ¹	VOLUME PURGED	PUMP RATE	NOTES	
		+/- 3%	+/- 0.1	+/- 10 mV	+/- 3%	+/- 10%	+/- 10%	(Gallons)	(ml/min)		
	4										
IPLE ID:											
IPLE DATE											

¹ - 10% for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

 $^{^{2}}$ - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

			PROJECT #: M3460003 SITE NAME: FORMER MT. PIERSANT LAND FIFL SITE ADDRESS: SITE CONDITIONS:							
тн:	20 20		WELL DIAMI CASING TYP	ETER: PE:	_	<u>'</u>		0		
WATER LEVEL (<0.3 feet once stabilized)	TEMP. (°F/°C)	Ph	ORP (mV)	COND. (mS/cm)	TURB. (NTU) ²	DO (mg/L) ¹	VOLUME PURGED	PUMP RATE	NOTES	
	+/- 3%	+/- 0.1	+/- 10 mV	+/- 3%	+/- 10%	+/- 10%	(Gallotts)	(minimi)		
							A 1			
	QUIPMENT: WATER LEVEL (<0.3 feet once stabilized)	CUIPMENT: WATER LEVEL (<0.3 feet once stabilized) TEMP. (°F/°C) +/- 3%	QUIPMENT: WATER LEVEL (<0.3 feet once stabilized) +/- 3% +/- 0.1	SITE ADDRESSITE CONDICTION SITE CONDICTION SITE ADDRESSITE CONDICTION SITE ADDRESSITE	SITE ADDRESS:	SITE ADDRESS:	SITE ADDRESS:	SITE ADDRESS:	SITE ADDRESS:	

¹ - 10% for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

² - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

DATE: 5 1/6 1 20 22 A.M. PERSONNEL: DA DBSERVERS:				PROJECT #: M3460003 SITE NAME: FORMER MT. PICASANT LAND FILL SITE ADDRESS: SITE CONDITIONS:								
REEN LEN	ELL: GTH: :: EQUIPMENT:	4		WELL DIAMI	WATER LEVEI ETER: PE:							
TIME	WATER LEVEL (<0,3 feet once stabilized)	TEMP. (°F/°C) +/- 3%	Ph +/- 0.1	ORP (mV)	COND. (mS/cm)	TURB. (NTU) ² +/- 10%	DO (mg/L) ¹ +/- 10%	VOLUME PURGED (Gallons)	PUMP RATE (ml/min)	NOTES		

¹ - 10% for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

 $^{^2}$ - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

DATE: 5 1/6 1 20 Z Z A, M. PERSONNEL: DA DBSERVERS:			SITE NAME: SITE ADDRI SITE CONDI						
ЭТН: :	_		WELL DIAM	ETER:		2′		4	
WATER LEVEL (<0.3 feet once stabilized)	TEMP. (°F/°C)	Ph	ORP (mV)	COND. (mS/cm)	TURB. (NTU) ²	DO (mg/L) ¹	VOLUME PURGED	PUMP RATE	NOTES
	+/- 3%	+/- 0.1	+/- 10 mV	+/- 3%	+/- 10%	+/- 10%	(Galions)	(mi/min)	
	DA ELL: GTH: EQUIPMENT: WATER LEVEL (<0.3 feet once	DA ELL: GTH: EQUIPMENT: WATER LEVEL (<0.3 feet once	DA ELL: GTH: EQUIPMENT: TEMP. (°F/°C) Ph (<0.3 feet once stabilized)	PROJECT # SITE NAME SITE ADDRI SITE COND BELL: DEPTH TO M WELL DIAM CASING TYPE EQUIPMENT: WATER LEVEL (<0.3 feet once stabilized) WATER LEVEL TEMP. (°F/°C) Ph ORP (mV)	SITE NAME: FORMED SITE NAME: FORMED SITE ADDRESS: SITE CONDITIONS: DEPTH TO WATER LEVE WELL DIAMETER: CASING TYPE: EQUIPMENT: WATER LEVEL (<0.3 feet once stabilized) TEMP. (°F/°C) Ph ORP (mV) COND. (mS/cm)	PROJECT #: M3460003 SITE NAME: FORMER MT. PID SITE ADDRESS: SITE CONDITIONS: DEPTH TO WATER LEVEL: 6,52 WELL DIAMETER: CASING TYPE: EQUIPMENT: WATER LEVEL (<0.3 feet once stabilized) VATER LEVEL (*0.7 feet once stabilized) **TEMP. (*F/*C) Ph ORP (mV) COND. (mS/cm) (mTU)²	DA SITE NAME: FORMER MT. PIONS ANT	DA	PROJECT #: M3460003 SITE NAME: FORMER MT. PIDASANT LANDFILL SITE ADDRESS: SITE CONDITIONS: DEPTH TO WATER LEVEL: 6.52 WELL DIAMETER: CASING TYPE: EQUIPMENT: WATER LEVEL (<0.3 feet once stabilized)

¹ - 10% for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

² - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

DATE: 5 1/6 12022 A.M. PERSONNEL: DA OBSERVERS:			PROJECT # SITE NAME: SITE ADDRI _ SITE CONDI							
REEN LEN BING TYPE	ELL: GTH: E: EQUIPMENT:			WELL DIAM	WATER LEVEI ETER: PE:		?'			
TIME	WATER LEVEL (<0.3 feet once stabilized)	TEMP. (°F/°C) +/- 3%	Ph +/- 0.1	ORP (mV)	COND. (mS/cm) +/- 3%	TURB. (NTU) ² +/- 10%	DO (mg/L) ¹ +/- 10%	VOLUME PURGED (Gallons)	PUMP RATE (ml/min)	NOTES
						1				
									-	

¹ - 10% for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

² - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

DATE: 5 1/6 12022 A.M. PERSONNEL: DA DBSERVERS:			PROJECT # SITE NAME SITE ADDRI _ SITE COND							
REEN LEN	ELL: GTH: EQUIPMENT:	DEPTH TO N								
TIME	WATER LEVEL (<0.3 feet once stabilized)	TEMP. (°F/°C)	Ph	ORP (mV)	COND. (mS/cm)	TURB. (NTU) ²	DO (mg/L) ¹	VOLUME PURGED	PUMP RATE	NOTES
		+/- 3%	+/- 0.1	+/- 10 mV	+/- 3%	+/- 10%	+/- 10%	(Gallons)	(ml/min)	
MPLE DATE: MPLE TIME:_	- - TATIC WATE	_	L ONL	Y-NO	GROUNS	DWATTER	Sample	E Coll	LECTED.	

^{1 - 10%} for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, consider the values as stabilized

² - 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized

APPENDIX D
LABORATORY ANALYTICAL REPORT (GROUNDWATER)

01-Jun-2022

Dave Adler
The Mannik & Smith Group, Inc.
2365 Haggerty Road South
Suite 100
Canton, MI 48188

Re: Former Mount Pleasant Landfill Work Order: 22051511

Dear Dave,

ALS Environmental received 16 samples on 17-May-2022 11:50 PM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 143.

If you have any questions regarding this report, please feel free to contact me:

ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Sincerely,

Electronically approved by: Julienn Williams

Julienn C. Wille

Julienn Williams Project Manager

Report of Laboratory Analysis

Certificate No: MI: 0022

ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Environmental 🎾

ALS Group, USA

Date: 01-Jun-22

Client: The Mannik & Smith Group, Inc.

Project: Former Mount Pleasant Landfill

Work Order: 22051511

Work Order Sample Summary

Lab Samp ID Client Sample ID	Matrix <u>Tag Number</u>	Collection Date	Date Received Hold
22051511-01 MW-101	Groundwater	5/16/2022 15:00	5/17/2022 23:50
22051511-02 MW-102	Groundwater	5/16/2022 14:46	5/17/2022 23:50
22051511-03 MW-103	Groundwater	5/16/2022 12:49	5/17/2022 23:50
22051511-04 MW-104	Groundwater	5/16/2022 13:02	5/17/2022 23:50
22051511-05 MW-105	Groundwater	5/16/2022 13:42	5/17/2022 23:50
22051511-06 MW-106	Groundwater	5/16/2022 14:10	5/17/2022 23:50
22051511-07 MW-200	Groundwater	5/16/2022 15:55	5/17/2022 23:50
22051511-08 MW-201	Groundwater	5/16/2022 16:45	5/17/2022 23:50
22051511-09 MW-202	Groundwater	5/16/2022 11:45	5/17/2022 23:50
22051511-10 MW-10-20	Groundwater	5/16/2022 15:53	5/17/2022 23:50
22051511-11 MW-14-20	Groundwater	5/16/2022 10:55	5/17/2022 23:50
22051511-12 MW-15-20	Groundwater	5/16/2022 10:25	5/17/2022 23:50
22051511-13 Field Blank	Groundwater	5/16/2022 15:45	5/17/2022 23:50
22051511-14 DUP	Groundwater	5/16/2022	5/17/2022 23:50
22051511-15 Trip Blank	Water	5/16/2022	5/17/2022 23:50
22051511-16 MW-109	Groundwater	5/16/2022	5/17/2022 23:50

ALS Group, USA Date: 01-Jun-22

Client: The Mannik & Smith Group, Inc.

Project: Former Mount Pleasant Landfill

ACRONIVACE TO

Project: Former Mount Pleasant Landfill
WorkOrder: 22051511

ACRONYMS, UNITS

ALS Group, USA

Date: 01-Jun-22

Qualifier	Description
*	Value exceeds Regulatory Limit
**	Estimated Value
a	Analyte is non-accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
E	Value above quantitation range
Н	Analyzed outside of Holding Time
Hr	BOD/CBOD - Sample was reset outside Hold Time, value should be considered estimated.
J	Analyte is present at an estimated concentration between the MDL and Report Limit
n ND	Analyte accreditation is not offered
ND O	Not Detected at the Reporting Limit Sample amount is > 4 times amount spiked
P	Dual Column results percent difference > 40%
R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL
X	Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or reagent contamination at the observed level.
Acronym	Description
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
TNTC	Too Numerous To Count
A	APHA Standard Methods
D	ASTM
E	EPA
SW	SW-846 Update III
Units Reported	d Description
$\mu g/L$	Micrograms per Liter
mg/L	Milligrams per Liter
ng/L	Nanograms per Liter

Client: The Mannik & Smith Group, Inc.

Project: Former Mount Pleasant Landfill

Work Order: 22051511

Case Narrative

The attached "Sample Receipt Checklist" documents the date of receipt, status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. A copy of the laboratory's scope of accreditation is available upon request.

Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting.

Any flags on MS/MSD samples not addressed in this narrative are unrelated to samples in this report.

With the following exceptions, all sample analyses achieved analytical criteria.

Batch 196707, Method E537 Mod, Sample MW-15-20 (22051511-12E): EIS01: 13C2-PFHxDA_IS failed low.

Batch 196606, Method E537 Mod, Sample MW-102 (22051511-02E): The extracted internal standard response was outside recovery criteria with high bias; sample results may exhibit bias. 13C-4 2-FTS IS, 13C2-6 2-FTS IS

Batch 196606, Method E537 Mod, Sample MW-105 (22051511-05E): One or more surrogate recoveries were above the upper control limits. The sample was non-detect, therefore, no qualification is needed. 13C2-FtS 4:2

Batch 196707, Method E537 Mod, Sample MW-201 (22051511-08E): The extracted internal standard response was outside recovery criteria with low bias; sample results may exhibit bias. d3-N-MeFOSAA_IS

Batch 196707, Method E537 Mod, Sample MW-201 (22051511-08E): One or more surrogate recoveries were below the lower control limits. The sample results may be biased low. d3-N-MeFOSAA

Batch 196707, Method E537 Mod, Sample MW-202 (22051511-09E): The extracted internal

Client: The Mannik & Smith Group, Inc.

Project: Former Mount Pleasant Landfill

Work Order: 22051511

standard response was outside recovery criteria with low bias; sample results may exhibit bias. d7-N-MeFOSE IS

Batch 196707, Method E537 Mod, Sample MW-202 (22051511-09E): The extracted internal standard response was outside recovery criteria with high bias; sample results may exhibit bias. 13C-4_2-FTS_IS, 13C2-6_2-FTS_IS

Batch 196707, Method E537 Mod, Sample MW-10-20 (22051511-10E): The extracted internal standard response was outside recovery criteria with low bias; sample results may exhibit bias. d5-N-EtFOSAA_IS, 13C-FOSA_IS, d7-N-MeFOSE_IS

Batch 196707, Method E537 Mod, Sample MW-10-20 (22051511-10E): The extracted internal standard response was outside recovery criteria with high bias; sample results may exhibit bias. 13C-4_2-FTS_IS

Batch 196707, Method E537 Mod, Sample MW-14-20 (22051511-11E): The extracted internal standard response was outside recovery criteria with high bias; sample results may exhibit bias. 13C-4_2-FTS_IS

Batch 196707, Method E537 Mod, Sample MW-15-20 (22051511-12E): The Continuing Calibration Verification did not meet method acceptance criteria for the following analytes, results are to be considered estimated: d3-N-MeFOSAA (target passes in CCV)

Batch 196707, Method E537 Mod, Sample MW-15-20 (22051511-12E): The extracted internal standard response was outside recovery criteria with low bias; sample results may exhibit bias. d3-N-MeFOSAA_IS, d5-N-EtFOSAA_IS, d5-NEtFOSA_IS, d9-EtFOSE_IS, d7-N-MeFOSE_IS, 13C-PFTeDA_IS

Batch 196707, Method E537 Mod, Sample Field Blank (22051511-13A): The Continuing Calibration Verification did not meet method acceptance criteria for the following analytes, results are to be considered estimated: d3-N-MeFOSAA (target passes in CCV)

Batch 196707, Method E537 Mod, Sample Field Blank (22051511-13A): The extracted internal standard response was outside recovery criteria with low bias; sample results may exhibit bias. d5-N-EtFOSAA_IS, 13C-FOSA_IS, d7-N-MeFOSE_IS

Batch 196707, Method E537 Mod, Sample DUP (22051511-14E): The Continuing Calibration Verification did not meet acceptance criteria with high bias, however, the sample results were non-detect for the following analytes: 11Cl-Pf3OUdS, FTS 10:2

Batch 196707, Method E537 Mod, Sample DUP (22051511-14E): The extracted internal standard response was outside recovery criteria with low bias; sample results may exhibit

Case Narrative

Client: The Mannik & Smith Group, Inc.

Project: Former Mount Pleasant Landfill Case Narrative

Work Order: 22051511

bias. d3-N-MeFOSAA_IS, 13C-PFUnDA_IS, d5-N-EtFOSAA_IS, 13C-FOSA_IS, 13C-PFDoA_IS, d7-N-MeFOSE_IS

Batch 196707, Method E537 Mod, Sample DUP (22051511-14E): One or more surrogate recoveries were below the lower control limits. The sample results may be biased low. d3-N-MeFOSAA

Batch 196707, Method E537 Mod, Sample MW-109 (22051511-16E): The extracted internal standard response was outside recovery criteria with low bias; sample results may exhibit bias. d3-N-MeFOSAA_IS, d5-N-EtFOSAA_IS, 13C-FOSA_IS, 13C-PFDoA_IS, d7-N-MeFOSE_IS, 13C-PFTeDA_IS

Batch 196624, Method SW846 8270D, Sample SLCSDW1-196624: The RPD between the LCS and LCSD was outside of the control limit. The sample results should be considered estimated for this analyte: 2,4-Dinitrophenol

Batch 196747, Method SW6020B, Sample 22051511-01DMS: The MS recovery was above the upper control limit. The corresponding result in the parent sample may be biased high for this analyte: Al, Zn

Batch 196747, Method SW6020B, Sample 22051511-01DMSD: The RPD between the MS and MSD was outside of the control limit. The corresponding result should be considered estimated for this compound: Al, Zn

Case Narrative Page 3 of 3

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-101Lab ID: 22051511-01

Collection Date: 5/16/2022 03:00 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
PCBS			SW8082	4	Prep: SW3511 5/20/22 16:59	Analyst: RM
Aroclor 1016	ND)	0.20	μg/L	1	5/21/2022 05:26 AM
Aroclor 1221	ND)	0.20	μg/L	1	5/21/2022 05:26 AM
Aroclor 1232	ND)	0.20	μg/L	1	5/21/2022 05:26 AM
Aroclor 1242	ND)	0.20	μg/L	1	5/21/2022 05:26 AM
Aroclor 1248	ND)	0.20	μg/L	1	5/21/2022 05:26 AM
Aroclor 1254	ND)	0.20	μg/L	1	5/21/2022 05:26 AM
Aroclor 1260	ND)	0.20	μg/L	1	5/21/2022 05:26 AM
Aroclor 1262	ND)	0.20	μg/L	1	5/21/2022 05:26 AM
Aroclor 1268	ND)	0.20	μg/L	1	5/21/2022 05:26 AM
PCBs, Total	ND)	0.20	μg/L	1	5/21/2022 05:26 AM
Surr: Decachlorobiphenyl	102	?	42-153	%REC	1	5/21/2022 05:26 AM
Surr: Tetrachloro-m-xylene	88.9)	48-127	%REC	1	5/21/2022 05:26 AM
MERCURY BY CVAA (DISSOLVED)			SW7470	4	Prep: SW7470 5/19/22 11:03	Analyst: EJC
Mercury	ND)	0.00020	mg/L	1	5/19/2022 12:29 PM
METALS BY ICP-MS (DISSOLVED)			SW6020E	3	Prep: SW3015A 5/23/22 17:14	Analyst: STP
Aluminum	0.015	i	0.010	mg/L	1	5/23/2022 07:10 PM
Antimony	ND)	0.0050	mg/L	1	5/23/2022 07:10 PM
Arsenic	ND)	0.0050	mg/L	1	5/23/2022 07:10 PM
Barium	0.097	,	0.0050	mg/L	1	5/23/2022 07:10 PM
Beryllium	ND)	0.0020	mg/L	1	5/23/2022 07:10 PM
Boron	0.30)	0.020	mg/L	1	5/23/2022 07:10 PM
Cadmium	ND)	0.0020	mg/L	1	5/23/2022 07:10 PM
Chromium	ND)	0.0050	mg/L	1	5/23/2022 07:10 PM
Copper	ND)	0.0050	mg/L	1	5/23/2022 07:10 PM
Lead	ND)	0.0050	mg/L	1	5/23/2022 07:10 PM
Nickel	ND)	0.0050	mg/L	1	5/23/2022 07:10 PM
Selenium	ND)	0.0050	mg/L	1	5/23/2022 07:10 PM
Silver	ND)	0.0050	mg/L	1	5/23/2022 07:10 PM
Thallium	ND)	0.0050	mg/L	1	5/23/2022 07:10 PM
Zinc	ND)	0.010	mg/L	1	5/23/2022 07:10 PM
PFAS BY EPA 537 MODIFIED			E537 MO	D	Prep: E537 Mod 5/20/22 18:04	Analyst: ENS
Fluorotelomer Sulphonic Acid 4:2 (FtS 4:2)	ND)	4.8	ng/L	1	5/27/2022 03:30 PM
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	ND)	4.8	ng/L	1	5/27/2022 03:30 PM
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	ND)	4.8	ng/L	1	5/27/2022 03:30 PM
Perfluorobutanesulfonic Acid (PFBS)	6.5	i	4.8	ng/L	1	5/27/2022 03:30 PM
Perfluorobutanoic Acid (PFBA)	15	i	4.8	ng/L	1	5/27/2022 03:30 PM
Perfluorodecanesulfonic Acid (PFDS)	ND)	4.8	_	1	5/27/2022 03:30 PM

Note: See Qualifiers page for a list of qualifiers and their definitions.

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-101Lab ID: 22051511-01

Collection Date: 5/16/2022 03:00 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Perfluorodecanoic Acid (PFDA)	ND		4.8	ng/L	1	5/27/2022 03:30 PM
Perfluorododecanoic Acid (PFDoA)	ND		4.8	ng/L	1	5/27/2022 03:30 PM
Perfluoroheptanesulfonic Acid (PFHpS)	ND		4.8	ng/L	1	5/27/2022 03:30 PM
Perfluoroheptanoic Acid (PFHpA)	8.6		4.8	ng/L	1	5/27/2022 03:30 PM
Perfluorohexanesulfonic Acid (PFHxS)	51		4.8	ng/L	1	5/27/2022 03:30 PM
Perfluorohexanoic Acid (PFHxA)	8.2		4.8	ng/L	1	5/27/2022 03:30 PM
Perfluorononanesulfonic Acid (PFNS)	ND		4.8	ng/L	1	5/27/2022 03:30 PM
Perfluorononanoic Acid (PFNA)	ND		4.8	ng/L	1	5/27/2022 03:30 PM
Perfluorooctanesulfonamide (PFOSA)	ND		4.8	ng/L	1	5/27/2022 03:30 PM
Perfluorooctanesulfonic Acid (PFOS)	45		1.9	ng/L	1	5/27/2022 03:30 PM
Perfluorooctanoic Acid (PFOA)	37		1.9	ng/L	1	5/27/2022 03:30 PM
Perfluoropentanesulfonic Acid (PFPeS)	ND		4.8	ng/L	1	5/27/2022 03:30 PM
Perfluoropentanoic Acid (PFPeA)	5.8		4.8	ng/L	1	5/27/2022 03:30 PM
Perfluorotetradecanoic Acid (PFTeA)	ND		4.8	ng/L	1	5/27/2022 03:30 PM
Perfluorotridecanoic Acid (PFTriA)	ND		4.8	ng/L	1	5/27/2022 03:30 PM
Perfluoroundecanoic Acid (PFUnA)	ND		4.8	ng/L	1	5/27/2022 03:30 PM
N-Ethylperfluorooctanesulfonamidoacetic Acid	ND		4.8	ng/L	1	5/27/2022 03:30 PM
N-Methylperfluorooctanesulfonamidoacetic Acid	ND		4.8	ng/L	1	5/27/2022 03:30 PM
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND		4.8	ng/L	1	5/27/2022 03:30 PM
4,8-Dioxa-3H-perfluorononanoic Acid (DONA)	ND		4.8	ng/L	1	5/27/2022 03:30 PM
11CI-Pf3OUdS	ND		4.8	ng/L	1	5/27/2022 03:30 PM
9CI-PF3ONS	ND		4.8	ng/L	1	5/27/2022 03:30 PM
Surr: 13C2-FtS 4:2	108	:	50-150	%REC	1	5/27/2022 03:30 PM
Surr: 13C2-FtS 6:2	96.0)	50-150	%REC	1	5/27/2022 03:30 PM
Surr: 13C2-FtS 8:2	74.6	;	50-150	%REC	1	5/27/2022 03:30 PM
Surr: 13C2-PFDA	62.9)	50-150	%REC	1	5/27/2022 03:30 PM
Surr: 13C2-PFDoA	53.3	!	50-150	%REC	1	5/27/2022 03:30 PM
Surr: 13C2-PFHxA	82.2		50-150	%REC	1	5/27/2022 03:30 PM
Surr: 13C2-PFTeA	82.0)	50-150	%REC	1	5/27/2022 03:30 PM
Surr: 13C2-PFUnA	67.2		50-150	%REC	1	5/27/2022 03:30 PM
Surr: 13C3-HFPO-DA	54.2		50-150	%REC	1	5/27/2022 03:30 PM
Surr: 13C3-PFBS	76.2		50-150	%REC	1	5/27/2022 03:30 PM
Surr: 13C4-PFBA	70.9)	50-150	%REC	1	5/27/2022 03:30 PM
Surr: 13C4-PFHpA	58.1		50-150	%REC	1	5/27/2022 03:30 PM
Surr: 13C4-PFOA	66.5	i	50-150	%REC	1	5/27/2022 03:30 PM
Surr: 13C4-PFOS	71.9)	50-150	%REC	1	5/27/2022 03:30 PM
Surr: 13C5-PFNA	73.6	;	50-150	%REC	1	5/27/2022 03:30 PM

Note: See Qualifiers page for a list of qualifiers and their definitions.

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-101Lab ID: 22051511-01

Collection Date: 5/16/2022 03:00 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 13C5-PFPeA	73.7		50-150	%REC	1	5/27/2022 03:30 PM
Surr: 13C8-FOSA	69.6		50-150	%REC	1	5/27/2022 03:30 PM
Surr: 1802-PFHxS	67.8		50-150	%REC	1	5/27/2022 03:30 PM
Surr: d5-N-EtFOSAA	59.6		50-150	%REC	1	5/27/2022 03:30 PM
Surr: d3-N-MeFOSAA	63.8		50-150	%REC	1	5/27/2022 03:30 PM
SEMI-VOLATILE ORGANIC COMPOUNDS			SW846 8	270D	Prep: SW3510 5/20/22 14:40	Analyst: EE
1,1`-Biphenyl	ND		20	μg/L	1	5/20/2022 07:41 PM
2,4,5-Trichlorophenol	ND		20	μg/L	1	5/20/2022 07:41 PM
2,4,6-Trichlorophenol	ND		20	μg/L	1	5/20/2022 07:41 PM
2,4-Dichlorophenol	ND		20	μg/L	1	5/20/2022 07:41 PM
2,4-Dimethylphenol	ND		20	μg/L	1	5/20/2022 07:41 PM
2,4-Dinitrophenol	ND		20	μg/L	1	5/20/2022 07:41 PM
2,4-Dinitrotoluene	ND		20	μg/L	1	5/20/2022 07:41 PM
2,6-Dinitrotoluene	ND		20	μg/L	1	5/20/2022 07:41 PM
2-Chloronaphthalene	ND		20	μg/L	1	5/20/2022 07:41 PM
2-Chlorophenol	ND		20	μg/L	1	5/20/2022 07:41 PM
2-Methylnaphthalene	ND		20	μg/L	1	5/20/2022 07:41 PM
2-Methylphenol	ND		20	μg/L	1	5/20/2022 07:41 PM
2-Nitroaniline	ND		20	μg/L	1	5/20/2022 07:41 PM
2-Nitrophenol	ND		20	μg/L	1	5/20/2022 07:41 PM
3&4-Methylphenol	ND		20	μg/L	1	5/20/2022 07:41 PM
3,3'-Dichlorobenzidine	ND		20	μg/L	1	5/20/2022 07:41 PM
3-Nitroaniline	ND		20	μg/L	1	5/20/2022 07:41 PM
4,6-Dinitro-2-methylphenol	ND		20	μg/L	1	5/20/2022 07:41 PM
4-Bromophenyl phenyl ether	ND		20	μg/L	1	5/20/2022 07:41 PM
4-Chloro-3-methylphenol	ND		20	μg/L	1	5/20/2022 07:41 PM
4-Chloroaniline	ND		20	μg/L	1	5/20/2022 07:41 PM
4-Chlorophenyl phenyl ether	ND		20	μg/L	1	5/20/2022 07:41 PM
4-Nitroaniline	ND		20	μg/L	1	5/20/2022 07:41 PM
4-Nitrophenol	ND		20	μg/L	1	5/20/2022 07:41 PM
Acenaphthene	ND		20	μg/L	1	5/20/2022 07:41 PM
Acenaphthylene	ND		20	μg/L	1	5/20/2022 07:41 PM
Acetophenone	ND		4.0	μg/L	1	5/20/2022 07:41 PM
Anthracene	ND		20	μg/L	1	5/20/2022 07:41 PM
Atrazine	ND		4.0	μg/L	1	5/20/2022 07:41 PM
Benzaldehyde	ND		4.0	μg/L	1	5/20/2022 07:41 PM
Benzo(a)anthracene	ND		20	μg/L	1	5/20/2022 07:41 PM
Benzo(a)pyrene	ND		20	μg/L	1	5/20/2022 07:41 PM
Benzo(b)fluoranthene	ND		20	μg/L	1	5/20/2022 07:41 PM

Note: See Qualifiers page for a list of qualifiers and their definitions.

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-101Lab ID: 22051511-01

Collection Date: 5/16/2022 03:00 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Benzo(g,h,i)perylene	ND		20	μg/L	1	5/20/2022 07:41 PM
Benzo(k)fluoranthene	ND		20	μg/L	1	5/20/2022 07:41 PM
Bis(2-chloroethoxy)methane	ND		20	μg/L	1	5/20/2022 07:41 PM
Bis(2-chloroethyl)ether	ND		20	μg/L	1	5/20/2022 07:41 PM
Bis(2-chloroisopropyl)ether	ND		20	μg/L	1	5/20/2022 07:41 PM
Bis(2-ethylhexyl)phthalate	ND		20	μg/L	1	5/20/2022 07:41 PM
Butyl benzyl phthalate	ND		20	μg/L	1	5/20/2022 07:41 PM
Caprolactam	ND		40	μg/L	1	5/20/2022 07:41 PM
Carbazole	ND		20	μg/L	1	5/20/2022 07:41 PM
Chrysene	ND		20	μg/L	1	5/20/2022 07:41 PM
Dibenzo(a,h)anthracene	ND		20	μg/L	1	5/20/2022 07:41 PM
Dibenzofuran	ND		20	μg/L	1	5/20/2022 07:41 PM
Diethyl phthalate	ND		20	μg/L	1	5/20/2022 07:41 PM
Dimethyl phthalate	ND		20	μg/L	1	5/20/2022 07:41 PM
Di-n-butyl phthalate	ND		20	μg/L	1	5/20/2022 07:41 PM
Di-n-octyl phthalate	ND		20	μg/L	1	5/20/2022 07:41 PM
Fluoranthene	ND		20	μg/L	1	5/20/2022 07:41 PM
Fluorene	ND		20	μg/L	1	5/20/2022 07:41 PM
Hexachlorobenzene	ND		20	μg/L	1	5/20/2022 07:41 PM
Hexachlorobutadiene	ND		20	μg/L	1	5/20/2022 07:41 PM
Hexachlorocyclopentadiene	ND		20	μg/L	1	5/20/2022 07:41 PM
Hexachloroethane	ND		20	μg/L	1	5/20/2022 07:41 PM
Indeno(1,2,3-cd)pyrene	ND		20	μg/L	1	5/20/2022 07:41 PM
Isophorone	ND		20	μg/L	1	5/20/2022 07:41 PM
Naphthalene	ND		20	μg/L	1	5/20/2022 07:41 PM
Nitrobenzene	ND		20	μg/L	1	5/20/2022 07:41 PM
N-Nitrosodi-n-propylamine	ND		20	μg/L	1	5/20/2022 07:41 PM
N-Nitrosodiphenylamine	ND		20	μg/L	1	5/20/2022 07:41 PM
Pentachlorophenol	ND		20	μg/L	1	5/20/2022 07:41 PM
Phenanthrene	ND		20	μg/L	1	5/20/2022 07:41 PM
Phenol	ND		20	μg/L	1	5/20/2022 07:41 PM
Pyrene	ND		20	μg/L	1	5/20/2022 07:41 PM
Surr: 2,4,6-Tribromophenol	68.5	i	27-83	%REC	1	5/20/2022 07:41 PM
Surr: 2-Fluorobiphenyl	61.3	:	26-79	%REC	1	5/20/2022 07:41 PM
Surr: 2-Fluorophenol	41.4	!	13-56	%REC	1	5/20/2022 07:41 PM
Surr: 4-Terphenyl-d14	80.4	!	43-106	%REC	1	5/20/2022 07:41 PM
Surr: Nitrobenzene-d5	62.0)	29-80	%REC	1	5/20/2022 07:41 PM
Surr: Phenol-d6	29.2		10-35	%REC	1	5/20/2022 07:41 PM
VOL 150 5 000 1100 001100:			01110000			

VOLATILE ORGANIC COMPOUNDS SW8260C Analyst: MF

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-101Lab ID: 22051511-01

Collection Date: 5/16/2022 03:00 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/20/2022 12:06 AM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	5/20/2022 12:06 AM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/20/2022 12:06 AM
1,1,2-Trichlorotrifluoroethane	ND	1.0	μg/L	1	5/20/2022 12:06 AM
1,1-Dichloroethane	ND	1.0	μg/L	1	5/20/2022 12:06 AM
1,1-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 12:06 AM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/20/2022 12:06 AM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	5/20/2022 12:06 AM
1,2-Dibromoethane	ND	1.0	μg/L	1	5/20/2022 12:06 AM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 12:06 AM
1,2-Dichloroethane	ND	1.0	μg/L	1	5/20/2022 12:06 AM
1,2-Dichloropropane	ND	1.0	μg/L	1	5/20/2022 12:06 AM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 12:06 AM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 12:06 AM
2-Butanone	ND	5.0	μg/L	1	5/20/2022 12:06 AM
2-Hexanone	ND	5.0	μg/L	1	5/20/2022 12:06 AM
4-Methyl-2-pentanone	ND	1.0	μg/L	1	5/20/2022 12:06 AM
Acetone	ND	10	μg/L	1	5/20/2022 12:06 AM
Benzene	ND	1.0	μg/L	1	5/20/2022 12:06 AM
Bromodichloromethane	ND	1.0	μg/L	1	5/20/2022 12:06 AM
Bromoform	ND	1.0	μg/L	1	5/20/2022 12:06 AM
Bromomethane	ND	1.0	μg/L	1	5/20/2022 12:06 AM
Carbon disulfide	ND	1.0	μg/L	1	5/20/2022 12:06 AM
Carbon tetrachloride	ND	1.0	μg/L	1	5/20/2022 12:06 AM
Chlorobenzene	ND	1.0	μg/L	1	5/20/2022 12:06 AM
Chloroethane	ND	1.0	μg/L	1	5/20/2022 12:06 AM
Chloroform	ND	1.0	μg/L	1	5/20/2022 12:06 AM
Chloromethane	ND	1.0	μg/L	1	5/20/2022 12:06 AM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 12:06 AM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/20/2022 12:06 AM
Cyclohexane	ND	2.0	μg/L	1	5/20/2022 12:06 AM
Dibromochloromethane	ND	1.0	μg/L	1	5/20/2022 12:06 AM
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/20/2022 12:06 AM
Ethylbenzene	ND	1.0	μg/L	1	5/20/2022 12:06 AM
Isopropylbenzene	ND	1.0	μg/L	1	5/20/2022 12:06 AM
Methyl acetate	ND	2.0	μg/L	1	5/20/2022 12:06 AM
Methyl tert-butyl ether	ND	1.0	μg/L	1	5/20/2022 12:06 AM
Methylcyclohexane	ND	1.0	μg/L	1	5/20/2022 12:06 AM
Methylene chloride	ND	5.0	μg/L	1	5/20/2022 12:06 AM
Styrene	ND	1.0	μg/L	1	5/20/2022 12:06 AM

Client: The Mannik & Smith Group, Inc.

Project: Former Mount Pleasant Landfill Work Order: 22051511

Sample ID: MW-101 **Lab ID:** 22051511-01

Collection Date: 5/16/2022 03:00 PM Matrix: GROUNDWATER

Analyses	Result Qu	Report ual Limit	Units	Dilution Factor	Date Analyzed
Tetrachloroethene	ND	1.0	μg/L	1	5/20/2022 12:06 AM
Toluene	ND	1.0	μg/L	1	5/20/2022 12:06 AM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 12:06 AM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/20/2022 12:06 AM
Trichloroethene	ND	1.0	μg/L	1	5/20/2022 12:06 AM
Trichlorofluoromethane	ND	1.0	μg/L	1	5/20/2022 12:06 AM
Vinyl chloride	ND	1.0	μg/L	1	5/20/2022 12:06 AM
Xylenes, Total	ND	3.0	μg/L	1	5/20/2022 12:06 AM
Surr: 1,2-Dichloroethane-d4	102	75-120	%REC	1	5/20/2022 12:06 AM
Surr: 4-Bromofluorobenzene	87.2	80-110	%REC	1	5/20/2022 12:06 AM
Surr: Dibromofluoromethane	107	85-115	%REC	1	5/20/2022 12:06 AM
Surr: Toluene-d8	100	85-110	%REC	1	5/20/2022 12:06 AM

Date: 01-Jun-2022

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order:22051511Sample ID:MW-102Lab ID:22051511-02

Collection Date: 5/16/2022 02:46 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
PCBS			SW8082	4	Prep: SW3511 5/20/22 16:59	Analyst: RM
Aroclor 1016	ND		0.20	μg/L	1	5/21/2022 05:39 AM
Aroclor 1221	ND		0.20	μg/L	1	5/21/2022 05:39 AM
Aroclor 1232	ND		0.20	μg/L	1	5/21/2022 05:39 AM
Aroclor 1242	ND		0.20	μg/L	1	5/21/2022 05:39 AM
Aroclor 1248	ND		0.20	μg/L	1	5/21/2022 05:39 AM
Aroclor 1254	ND		0.20	μg/L	1	5/21/2022 05:39 AM
Aroclor 1260	ND		0.20	μg/L	1	5/21/2022 05:39 AM
Aroclor 1262	ND		0.20	μg/L	1	5/21/2022 05:39 AM
Aroclor 1268	ND		0.20	μg/L	1	5/21/2022 05:39 AM
PCBs, Total	ND		0.20	μg/L	1	5/21/2022 05:39 AM
Surr: Decachlorobiphenyl	73.3	}	42-153	%REC	1	5/21/2022 05:39 AM
Surr: Tetrachloro-m-xylene	85.3	}	48-127	%REC	1	5/21/2022 05:39 AM
MERCURY BY CVAA (DISSOLVED)			SW7470	4	Prep: SW7470 5/19/22 11:03	Analyst: EJC
Mercury	ND		0.00020	mg/L	1	5/19/2022 12:31 PM
METALS BY ICP-MS (DISSOLVED)			SW6020E	3	Prep: SW3015A 5/23/22 17:14	Analyst: STP
Aluminum	ND		0.010	mg/L	1	5/23/2022 07:15 PM
Antimony	ND		0.0050	mg/L	1	5/23/2022 07:15 PM
Arsenic	0.0054		0.0050	mg/L	1	5/23/2022 07:15 PM
Barium	0.18	i	0.0050	mg/L	1	5/23/2022 07:15 PM
Beryllium	ND		0.0020	mg/L	1	5/23/2022 07:15 PM
Boron	0.58		0.020	mg/L	1	5/23/2022 07:15 PM
Cadmium	ND		0.0020	mg/L	1	5/23/2022 07:15 PM
Chromium	ND		0.0050	mg/L	1	5/23/2022 07:15 PM
Copper	ND		0.0050	mg/L	1	5/23/2022 07:15 PM
Lead	ND		0.0050	mg/L	1	5/23/2022 07:15 PM
Nickel	ND		0.0050	mg/L	1	5/23/2022 07:15 PM
Selenium	ND		0.0050	mg/L	1	5/23/2022 07:15 PM
Silver	ND		0.0050	mg/L	1	5/23/2022 07:15 PM
Thallium	ND		0.0050	mg/L	1	5/23/2022 07:15 PM
Zinc	ND		0.010	mg/L	1	5/25/2022 04:55 PM
PFAS BY EPA 537 MODIFIED			E537 MO	D	Prep: E537 Mod 5/20/22 18:04	Analyst: ENS
Fluorotelomer Sulphonic Acid 4:2 (FtS 4:2)	ND		4.8	ng/L	1	5/25/2022 04:56 AM
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	ND		4.8	ng/L	1	5/25/2022 04:56 AM
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	ND		4.8	ng/L	1	5/25/2022 04:56 AM
Perfluorobutanesulfonic Acid (PFBS)	27		4.8	ng/L	1	5/25/2022 04:56 AM
Perfluorobutanoic Acid (PFBA)	31		4.8	ng/L	1	5/25/2022 04:56 AM
Perfluorodecanesulfonic Acid (PFDS)	ND		4.8		1	5/25/2022 04:56 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-102Lab ID: 22051511-02

Collection Date: 5/16/2022 02:46 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Perfluorodecanoic Acid (PFDA)	ND		4.8	ng/L	1	5/25/2022 04:56 AM
Perfluorododecanoic Acid (PFDoA)	ND		4.8	ng/L	1	5/25/2022 04:56 AM
Perfluoroheptanesulfonic Acid (PFHpS)	6.0	1	4.8	ng/L	1	5/25/2022 04:56 AM
Perfluoroheptanoic Acid (PFHpA)	32		4.8	ng/L	1	5/25/2022 04:56 AM
Perfluorohexanesulfonic Acid (PFHxS)	50	1	4.8	ng/L	1	5/25/2022 04:56 AM
Perfluorohexanoic Acid (PFHxA)	38		4.8	ng/L	1	5/25/2022 04:56 AM
Perfluorononanesulfonic Acid (PFNS)	ND		4.8	ng/L	1	5/25/2022 04:56 AM
Perfluorononanoic Acid (PFNA)	ND		4.8	ng/L	1	5/25/2022 04:56 AM
Perfluorooctanesulfonamide (PFOSA)	ND		4.8	ng/L	1	5/25/2022 04:56 AM
Perfluorooctanesulfonic Acid (PFOS)	83		1.9	ng/L	1	5/25/2022 04:56 AM
Perfluorooctanoic Acid (PFOA)	92		1.9	ng/L	1	5/25/2022 04:56 AM
Perfluoropentanesulfonic Acid (PFPeS)	31		4.8	ng/L	1	5/25/2022 04:56 AM
Perfluoropentanoic Acid (PFPeA)	15		4.8	ng/L	1	5/25/2022 04:56 AM
Perfluorotetradecanoic Acid (PFTeA)	ND		4.8	ng/L	1	5/25/2022 04:56 AM
Perfluorotridecanoic Acid (PFTriA)	ND		4.8	ng/L	1	5/25/2022 04:56 AM
Perfluoroundecanoic Acid (PFUnA)	ND		4.8	ng/L	1	5/25/2022 04:56 AM
N-Ethylperfluorooctanesulfonamidoacetic Acid	ND		4.8	ng/L	1	5/25/2022 04:56 AM
N-Methylperfluorooctanesulfonamidoacetic Acid	ND		4.8	ng/L	1	5/25/2022 04:56 AM
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND		4.8	ng/L	1	5/25/2022 04:56 AM
4,8-Dioxa-3H-perfluorononanoic Acid (DONA)	ND		4.8	ng/L	1	5/25/2022 04:56 AM
11CI-Pf3OUdS	ND		4.8	ng/L	1	5/25/2022 04:56 AM
9CI-PF3ONS	ND		4.8	ng/L	1	5/25/2022 04:56 AM
Surr: 13C2-FtS 4:2	284	S	50-150	%REC	1	5/25/2022 04:56 AM
Surr: 13C2-FtS 6:2	264	S	50-150	%REC	1	5/25/2022 04:56 AM
Surr: 13C2-FtS 8:2	139)	50-150	%REC	1	5/25/2022 04:56 AM
Surr: 13C2-PFDA	77.8	!	50-150	%REC	1	5/25/2022 04:56 AM
Surr: 13C2-PFDoA	74.0)	50-150	%REC	1	5/25/2022 04:56 AM
Surr: 13C2-PFHxA	76.1		50-150	%REC	1	5/25/2022 04:56 AM
Surr: 13C2-PFTeA	91.4	!	50-150	%REC	1	5/25/2022 04:56 AM
Surr: 13C2-PFUnA	68.3	}	50-150	%REC	1	5/25/2022 04:56 AM
Surr: 13C3-HFPO-DA	62.2		50-150	%REC	1	5/25/2022 04:56 AM
Surr: 13C3-PFBS	68.7	•	50-150	%REC	1	5/25/2022 04:56 AM
Surr: 13C4-PFBA	72.6		50-150	%REC	1	5/25/2022 04:56 AM
Surr: 13C4-PFHpA	75.5		50-150	%REC	1	5/25/2022 04:56 AM
Surr: 13C4-PFOA	86.1		50-150	%REC	1	5/25/2022 04:56 AM
Surr: 13C4-PFOS	70.8		50-150	%REC	1	5/25/2022 04:56 AM
Surr: 13C5-PFNA	77.1		50-150	%REC	1	5/25/2022 04:56 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-102Lab ID: 22051511-02

Collection Date: 5/16/2022 02:46 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 13C5-PFPeA	69.4	!	50-150	%REC	1	5/25/2022 04:56 AM
Surr: 13C8-FOSA	62.0)	50-150	%REC	1	5/25/2022 04:56 AM
Surr: 1802-PFHxS	59.4	!	50-150	%REC	1	5/25/2022 04:56 AM
Surr: d5-N-EtFOSAA	84.6	;	50-150	%REC	1	5/25/2022 04:56 AM
Surr: d3-N-MeFOSAA	84.1		50-150	%REC	1	5/25/2022 04:56 AM
SEMI-VOLATILE ORGANIC COMPOUNDS			SW846 8	270D	Prep: SW3510 5/20/22 14:40	Analyst: EE
1,1`-Biphenyl	ND		21	μg/L	1	5/20/2022 08:02 PM
2,4,5-Trichlorophenol	ND		21	μg/L	1	5/20/2022 08:02 PM
2,4,6-Trichlorophenol	ND		21	μg/L	1	5/20/2022 08:02 PM
2,4-Dichlorophenol	ND		21	μg/L	1	5/20/2022 08:02 PM
2,4-Dimethylphenol	ND		21	μg/L	1	5/20/2022 08:02 PM
2,4-Dinitrophenol	ND		21	μg/L	1	5/20/2022 08:02 PM
2,4-Dinitrotoluene	ND		21	μg/L	1	5/20/2022 08:02 PM
2,6-Dinitrotoluene	ND		21	μg/L	1	5/20/2022 08:02 PM
2-Chloronaphthalene	ND		21	μg/L	1	5/20/2022 08:02 PM
2-Chlorophenol	ND		21	μg/L	1	5/20/2022 08:02 PM
2-Methylnaphthalene	ND		21	μg/L	1	5/20/2022 08:02 PM
2-Methylphenol	ND		21	μg/L	1	5/20/2022 08:02 PM
2-Nitroaniline	ND		21	μg/L	1	5/20/2022 08:02 PM
2-Nitrophenol	ND		21	μg/L	1	5/20/2022 08:02 PM
3&4-Methylphenol	ND		21	μg/L	1	5/20/2022 08:02 PM
3,3'-Dichlorobenzidine	ND		21	μg/L	1	5/20/2022 08:02 PM
3-Nitroaniline	ND		21	μg/L	1	5/20/2022 08:02 PM
4,6-Dinitro-2-methylphenol	ND		21	μg/L	1	5/20/2022 08:02 PM
4-Bromophenyl phenyl ether	ND)	21	μg/L	1	5/20/2022 08:02 PM
4-Chloro-3-methylphenol	ND)	21	μg/L	1	5/20/2022 08:02 PM
4-Chloroaniline	ND)	21	μg/L	1	5/20/2022 08:02 PM
4-Chlorophenyl phenyl ether	ND)	21	μg/L	1	5/20/2022 08:02 PM
4-Nitroaniline	ND)	21	μg/L	1	5/20/2022 08:02 PM
4-Nitrophenol	ND)	21	μg/L	1	5/20/2022 08:02 PM
Acenaphthene	ND)	21	μg/L	1	5/20/2022 08:02 PM
Acenaphthylene	ND		21	μg/L	1	5/20/2022 08:02 PM
Acetophenone	ND		4.1	μg/L	1	5/20/2022 08:02 PM
Anthracene	ND		21	μg/L	1	5/20/2022 08:02 PM
Atrazine	ND		4.1	μg/L	1	5/20/2022 08:02 PM
Benzaldehyde	ND		4.1	μg/L	1	5/20/2022 08:02 PM
Benzo(a)anthracene	ND		21	μg/L	1	5/20/2022 08:02 PM
Benzo(a)pyrene	ND		21	μg/L	1	5/20/2022 08:02 PM
Benzo(b)fluoranthene	ND		21	μg/L	1	5/20/2022 08:02 PM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-102Lab ID: 22051511-02

Collection Date: 5/16/2022 02:46 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Benzo(g,h,i)perylene	ND		21	μg/L	1	5/20/2022 08:02 PM
Benzo(k)fluoranthene	ND		21	μg/L	1	5/20/2022 08:02 PM
Bis(2-chloroethoxy)methane	ND		21	μg/L	1	5/20/2022 08:02 PM
Bis(2-chloroethyl)ether	ND		21	μg/L	1	5/20/2022 08:02 PM
Bis(2-chloroisopropyl)ether	ND		21	μg/L	1	5/20/2022 08:02 PM
Bis(2-ethylhexyl)phthalate	ND		21	μg/L	1	5/20/2022 08:02 PM
Butyl benzyl phthalate	ND		21	μg/L	1	5/20/2022 08:02 PM
Caprolactam	ND		41	μg/L	1	5/20/2022 08:02 PM
Carbazole	ND		21	μg/L	1	5/20/2022 08:02 PM
Chrysene	ND		21	μg/L	1	5/20/2022 08:02 PM
Dibenzo(a,h)anthracene	ND		21	μg/L	1	5/20/2022 08:02 PM
Dibenzofuran	ND		21	μg/L	1	5/20/2022 08:02 PM
Diethyl phthalate	ND		21	μg/L	1	5/20/2022 08:02 PM
Dimethyl phthalate	ND		21	μg/L	1	5/20/2022 08:02 PM
Di-n-butyl phthalate	ND		21	μg/L	1	5/20/2022 08:02 PM
Di-n-octyl phthalate	ND		21	μg/L	1	5/20/2022 08:02 PM
Fluoranthene	ND		21	μg/L	1	5/20/2022 08:02 PM
Fluorene	ND		21	μg/L	1	5/20/2022 08:02 PM
Hexachlorobenzene	ND		21	μg/L	1	5/20/2022 08:02 PM
Hexachlorobutadiene	ND		21	μg/L	1	5/20/2022 08:02 PM
Hexachlorocyclopentadiene	ND		21	μg/L	1	5/20/2022 08:02 PM
Hexachloroethane	ND		21	μg/L	1	5/20/2022 08:02 PM
Indeno(1,2,3-cd)pyrene	ND		21	μg/L	1	5/20/2022 08:02 PM
Isophorone	ND		21	μg/L	1	5/20/2022 08:02 PM
Naphthalene	ND		21	μg/L	1	5/20/2022 08:02 PM
Nitrobenzene	ND		21	μg/L	1	5/20/2022 08:02 PM
N-Nitrosodi-n-propylamine	ND		21	μg/L	1	5/20/2022 08:02 PM
N-Nitrosodiphenylamine	ND		21	μg/L	1	5/20/2022 08:02 PM
Pentachlorophenol	ND		21	μg/L	1	5/20/2022 08:02 PM
Phenanthrene	ND		21	μg/L	1	5/20/2022 08:02 PM
Phenol	ND		21	μg/L	1	5/20/2022 08:02 PM
Pyrene	ND		21	μg/L	1	5/20/2022 08:02 PM
Surr: 2,4,6-Tribromophenol	73.4		27-83	%REC	1	5/20/2022 08:02 PM
Surr: 2-Fluorobiphenyl	62.8		26-79	%REC	1	5/20/2022 08:02 PM
Surr: 2-Fluorophenol	41.7		13-56	%REC	1	5/20/2022 08:02 PM
Surr: 4-Terphenyl-d14	85.7		43-106	%REC	1	5/20/2022 08:02 PM
Surr: Nitrobenzene-d5	64.0		29-80	%REC	1	5/20/2022 08:02 PM
Surr: Phenol-d6	27.4		10-35	%REC	1	5/20/2022 08:02 PM

VOLATILE ORGANIC COMPOUNDS SW8260C Analyst: MF

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-102Lab ID: 22051511-02

Collection Date: 5/16/2022 02:46 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Report Qual Limit	Units	Dilution Factor	Date Analyzed
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/20/2022 12:24 AM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	5/20/2022 12:24 AM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/20/2022 12:24 AM
1,1,2-Trichlorotrifluoroethane	ND	1.0	μg/L	1	5/20/2022 12:24 AM
1,1-Dichloroethane	ND	1.0	μg/L	1	5/20/2022 12:24 AM
1,1-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 12:24 AM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/20/2022 12:24 AM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	5/20/2022 12:24 AM
1,2-Dibromoethane	ND	1.0	μg/L	1	5/20/2022 12:24 AM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 12:24 AM
1,2-Dichloroethane	ND	1.0	μg/L	1	5/20/2022 12:24 AM
1,2-Dichloropropane	ND	1.0	μg/L	1	5/20/2022 12:24 AM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 12:24 AM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 12:24 AM
2-Butanone	ND	5.0	μg/L	1	5/20/2022 12:24 AM
2-Hexanone	ND	5.0	μg/L	1	5/20/2022 12:24 AM
4-Methyl-2-pentanone	ND	1.0	μg/L	1	5/20/2022 12:24 AM
Acetone	ND	10	μg/L	1	5/20/2022 12:24 AM
Benzene	ND	1.0	μg/L	1	5/20/2022 12:24 AM
Bromodichloromethane	ND	1.0	μg/L	1	5/20/2022 12:24 AM
Bromoform	ND	1.0	μg/L	1	5/20/2022 12:24 AM
Bromomethane	ND	1.0	μg/L	1	5/20/2022 12:24 AM
Carbon disulfide	ND	1.0	μg/L	1	5/20/2022 12:24 AM
Carbon tetrachloride	ND	1.0	μg/L	1	5/20/2022 12:24 AM
Chlorobenzene	ND	1.0	μg/L	1	5/20/2022 12:24 AM
Chloroethane	ND	1.0	μg/L	1	5/20/2022 12:24 AM
Chloroform	ND	1.0	μg/L	1	5/20/2022 12:24 AM
Chloromethane	ND	1.0	μg/L	1	5/20/2022 12:24 AM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 12:24 AM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/20/2022 12:24 AM
Cyclohexane	ND	2.0	μg/L	1	5/20/2022 12:24 AM
Dibromochloromethane	ND	1.0	μg/L	1	5/20/2022 12:24 AM
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/20/2022 12:24 AM
Ethylbenzene	ND	1.0	μg/L	1	5/20/2022 12:24 AM
Isopropylbenzene	ND	1.0		1	5/20/2022 12:24 AM
Methyl acetate	ND	2.0	μg/L	1	5/20/2022 12:24 AM
Methyl tert-butyl ether	ND	1.0	μg/L	1	5/20/2022 12:24 AM
Methylcyclohexane	ND	1.0		1	5/20/2022 12:24 AM
Methylene chloride	ND	5.0	μg/L	1	5/20/2022 12:24 AM
Styrene	ND	1.0	μg/L	1	5/20/2022 12:24 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-102Lab ID: 22051511-02

Collection Date: 5/16/2022 02:46 PM Matrix: GROUNDWATER

Analyses	Result		port imit	Units	Dilution Factor	Date Analyzed
Tetrachloroethene	ND		1.0	μg/L	1	5/20/2022 12:24 AM
Toluene	ND		1.0	μg/L	1	5/20/2022 12:24 AM
trans-1,2-Dichloroethene	ND		1.0	μg/L	1	5/20/2022 12:24 AM
trans-1,3-Dichloropropene	ND		1.0	μg/L	1	5/20/2022 12:24 AM
Trichloroethene	ND		1.0	μg/L	1	5/20/2022 12:24 AM
Trichlorofluoromethane	ND		1.0	μg/L	1	5/20/2022 12:24 AM
Vinyl chloride	ND		1.0	μg/L	1	5/20/2022 12:24 AM
Xylenes, Total	ND		3.0	μg/L	1	5/20/2022 12:24 AM
Surr: 1,2-Dichloroethane-d4	106	7	5-120	%REC	1	5/20/2022 12:24 AM
Surr: 4-Bromofluorobenzene	95.6	8	0-110	%REC	1	5/20/2022 12:24 AM
Surr: Dibromofluoromethane	101	8	5-115	%REC	1	5/20/2022 12:24 AM
Surr: Toluene-d8	103	8	5-110	%REC	1	5/20/2022 12:24 AM

Date: 01-Jun-2022

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-103Lab ID: 22051511-03

Collection Date: 5/16/2022 12:49 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
PCBS			SW8082	4	Prep: SW3511 5/20/22 16:59	Analyst: RM
Aroclor 1016	ND		0.20	μg/L	1	5/21/2022 05:52 AM
Aroclor 1221	ND		0.20	μg/L	1	5/21/2022 05:52 AM
Aroclor 1232	ND		0.20	μg/L	1	5/21/2022 05:52 AM
Aroclor 1242	ND		0.20	μg/L	1	5/21/2022 05:52 AM
Aroclor 1248	ND		0.20	μg/L	1	5/21/2022 05:52 AM
Aroclor 1254	ND		0.20	μg/L	1	5/21/2022 05:52 AM
Aroclor 1260	ND		0.20	μg/L	1	5/21/2022 05:52 AM
Aroclor 1262	ND		0.20	μg/L	1	5/21/2022 05:52 AM
Aroclor 1268	ND		0.20	μg/L	1	5/21/2022 05:52 AM
PCBs, Total	ND		0.20	μg/L	1	5/21/2022 05:52 AM
Surr: Decachlorobiphenyl	111		42-153	%REC	1	5/21/2022 05:52 AM
Surr: Tetrachloro-m-xylene	92.1		48-127	%REC	1	5/21/2022 05:52 AM
MERCURY BY CVAA (DISSOLVED)			SW7470A		Prep: SW7470 5/19/22 11:03	Analyst: EJC
Mercury	ND		0.00020	mg/L	1	5/19/2022 12:33 PM
METALS BY ICP-MS (DISSOLVED)			SW6020E	3	Prep: SW3015A 5/23/22 17:14	Analyst: STP
Aluminum	ND		0.010	mg/L	1	5/23/2022 07:20 PM
Antimony	ND		0.0050	mg/L	1	5/23/2022 07:20 PM
Arsenic	0.025		0.0050	mg/L	1	5/23/2022 07:20 PM
Barium	0.057		0.0050	mg/L	1	5/23/2022 07:20 PM
Beryllium	ND		0.0020	mg/L	1	5/23/2022 07:20 PM
Boron	0.16		0.020	mg/L	1	5/23/2022 07:20 PM
Cadmium	ND		0.0020	mg/L	1	5/23/2022 07:20 PM
Chromium	ND		0.0050	mg/L	1	5/23/2022 07:20 PM
Copper	ND		0.0050	mg/L	1	5/23/2022 07:20 PM
Lead	ND		0.0050	mg/L	1	5/23/2022 07:20 PM
Nickel	ND		0.0050	mg/L	1	5/23/2022 07:20 PM
Selenium	ND		0.0050	mg/L	1	5/23/2022 07:20 PM
Silver	ND		0.0050	mg/L	1	5/23/2022 07:20 PM
Thallium	ND		0.0050	mg/L	1	5/23/2022 07:20 PM
Zinc	ND		0.010	mg/L	1	5/23/2022 07:20 PM
PFAS BY EPA 537 MODIFIED			E537 MO	D	Prep: E537 Mod 5/20/22 18:04	Analyst: ENS
Fluorotelomer Sulphonic Acid 4:2 (FtS 4:2)	ND		4.9	ng/L	1	5/25/2022 05:04 AM
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	ND		4.9	ng/L	1	5/25/2022 05:04 AM
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	ND		4.9	ng/L	1	5/25/2022 05:04 AM
Perfluorobutanesulfonic Acid (PFBS)	7.3		4.9	ng/L	1	5/25/2022 05:04 AM
Perfluorobutanoic Acid (PFBA)	40		4.9	ng/L	1	5/25/2022 05:04 AM
Perfluorodecanesulfonic Acid (PFDS)	ND		4.9	ng/L	1	5/25/2022 05:04 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-103Lab ID: 22051511-03

Collection Date: 5/16/2022 12:49 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Perfluorodecanoic Acid (PFDA)	ND		4.9	ng/L	1	5/25/2022 05:04 AM
Perfluorododecanoic Acid (PFDoA)	ND		4.9	ng/L	1	5/25/2022 05:04 AM
Perfluoroheptanesulfonic Acid (PFHpS)	ND		4.9	ng/L	1	5/25/2022 05:04 AM
Perfluoroheptanoic Acid (PFHpA)	6.9		4.9	ng/L	1	5/25/2022 05:04 AM
Perfluorohexanesulfonic Acid (PFHxS)	ND		4.9	ng/L	1	5/25/2022 05:04 AM
Perfluorohexanoic Acid (PFHxA)	19		4.9	ng/L	1	5/25/2022 05:04 AM
Perfluorononanesulfonic Acid (PFNS)	ND		4.9	ng/L	1	5/25/2022 05:04 AM
Perfluorononanoic Acid (PFNA)	ND		4.9	ng/L	1	5/25/2022 05:04 AM
Perfluorooctanesulfonamide (PFOSA)	ND		4.9	ng/L	1	5/25/2022 05:04 AM
Perfluorooctanesulfonic Acid (PFOS)	ND		1.9	ng/L	1	5/25/2022 05:04 AM
Perfluorooctanoic Acid (PFOA)	4.8		1.9	ng/L	1	5/25/2022 05:04 AM
Perfluoropentanesulfonic Acid (PFPeS)	ND		4.9	ng/L	1	5/25/2022 05:04 AM
Perfluoropentanoic Acid (PFPeA)	7.2		4.9	ng/L	1	5/25/2022 05:04 AM
Perfluorotetradecanoic Acid (PFTeA)	ND		4.9	ng/L	1	5/25/2022 05:04 AM
Perfluorotridecanoic Acid (PFTriA)	ND		4.9	ng/L	1	5/25/2022 05:04 AM
Perfluoroundecanoic Acid (PFUnA)	ND		4.9	ng/L	1	5/25/2022 05:04 AM
N-Ethylperfluorooctanesulfonamidoacetic Acid	ND		4.9	ng/L	1	5/25/2022 05:04 AM
N-Methylperfluorooctanesulfonamidoacetic Acid	ND		4.9	ng/L	1	5/25/2022 05:04 AM
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND		4.9	ng/L	1	5/25/2022 05:04 AM
4,8-Dioxa-3H-perfluorononanoic Acid (DONA)	ND		4.9	ng/L	1	5/25/2022 05:04 AM
11CI-Pf3OUdS	ND		4.9	ng/L	1	5/25/2022 05:04 AM
9CI-PF3ONS	ND		4.9	ng/L	1	5/25/2022 05:04 AM
Surr: 13C2-FtS 4:2	124		50-150	%REC	1	5/25/2022 05:04 AM
Surr: 13C2-FtS 6:2	89.3		50-150	%REC	1	5/25/2022 05:04 AM
Surr: 13C2-FtS 8:2	115		50-150	%REC	1	5/25/2022 05:04 AM
Surr: 13C2-PFDA	71.3		50-150	%REC	1	5/25/2022 05:04 AM
Surr: 13C2-PFDoA	64.4		50-150	%REC	1	5/25/2022 05:04 AM
Surr: 13C2-PFHxA	65.5		50-150	%REC	1	5/25/2022 05:04 AM
Surr: 13C2-PFTeA	76.5		50-150	%REC	1	5/25/2022 05:04 AM
Surr: 13C2-PFUnA	95.3		50-150	%REC	1	5/25/2022 05:04 AM
Surr: 13C3-HFPO-DA	58.6		50-150	%REC	1	5/25/2022 05:04 AM
Surr: 13C3-PFBS	77.0		50-150	%REC	1	5/25/2022 05:04 AM
Surr: 13C4-PFBA	81.2		50-150	%REC	1	5/25/2022 05:04 AM
Surr: 13C4-PFHpA	102		50-150	%REC	1	5/25/2022 05:04 AM
Surr: 13C4-PFOA	98.0		50-150	%REC	1	5/25/2022 05:04 AM
Surr: 13C4-PFOS	70.1		50-150	%REC	1	5/25/2022 05:04 AM
Surr: 13C5-PFNA	96.2		50-150	%REC	1	5/25/2022 05:04 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-103Lab ID: 22051511-03

Collection Date: 5/16/2022 12:49 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 13C5-PFPeA	73.9)	50-150	%REC	1	5/25/2022 05:04 AM
Surr: 13C8-FOSA	87.8	}	50-150	%REC	1	5/25/2022 05:04 AM
Surr: 1802-PFHxS	84.7	•	50-150	%REC	1	5/25/2022 05:04 AM
Surr: d5-N-EtFOSAA	123	3	50-150	%REC	1	5/25/2022 05:04 AM
Surr: d3-N-MeFOSAA	68.1		50-150	%REC	1	5/25/2022 05:04 AM
SEMI-VOLATILE ORGANIC COMPOUNDS			SW846 8	270D	Prep: SW3510 5/20/22 14:40	Analyst: EE
1,1`-Biphenyl	ND		19	μg/L	1	5/20/2022 08:23 PM
2,4,5-Trichlorophenol	ND		19	μg/L	1	5/20/2022 08:23 PM
2,4,6-Trichlorophenol	ND		19	μg/L	1	5/20/2022 08:23 PM
2,4-Dichlorophenol	ND		19	μg/L	1	5/20/2022 08:23 PM
2,4-Dimethylphenol	ND		19	μg/L	1	5/20/2022 08:23 PM
2,4-Dinitrophenol	ND		19	μg/L	1	5/20/2022 08:23 PM
2,4-Dinitrotoluene	ND		19	μg/L	1	5/20/2022 08:23 PM
2,6-Dinitrotoluene	ND		19	μg/L	1	5/20/2022 08:23 PM
2-Chloronaphthalene	ND		19	μg/L	1	5/20/2022 08:23 PM
2-Chlorophenol	ND		19	μg/L	1	5/20/2022 08:23 PM
2-Methylnaphthalene	ND		19	μg/L	1	5/20/2022 08:23 PM
2-Methylphenol	ND		19	μg/L	1	5/20/2022 08:23 PM
2-Nitroaniline	ND		19	μg/L	1	5/20/2022 08:23 PM
2-Nitrophenol	ND		19	μg/L	1	5/20/2022 08:23 PM
3&4-Methylphenol	ND		19	μg/L	1	5/20/2022 08:23 PM
3,3'-Dichlorobenzidine	ND		19	μg/L	1	5/20/2022 08:23 PM
3-Nitroaniline	ND		19	μg/L	1	5/20/2022 08:23 PM
4,6-Dinitro-2-methylphenol	ND		19	μg/L	1	5/20/2022 08:23 PM
4-Bromophenyl phenyl ether	ND)	19	μg/L	1	5/20/2022 08:23 PM
4-Chloro-3-methylphenol	ND)	19	μg/L	1	5/20/2022 08:23 PM
4-Chloroaniline	ND)	19	μg/L	1	5/20/2022 08:23 PM
4-Chlorophenyl phenyl ether	ND)	19	μg/L	1	5/20/2022 08:23 PM
4-Nitroaniline	ND)	19	μg/L	1	5/20/2022 08:23 PM
4-Nitrophenol	ND)	19	μg/L	1	5/20/2022 08:23 PM
Acenaphthene	ND)	19	μg/L	1	5/20/2022 08:23 PM
Acenaphthylene	ND		19	μg/L	1	5/20/2022 08:23 PM
Acetophenone	ND		3.8	μg/L	1	5/20/2022 08:23 PM
Anthracene	ND		19	μg/L	1	5/20/2022 08:23 PM
Atrazine	ND		3.8	μg/L	1	5/20/2022 08:23 PM
Benzaldehyde	ND		3.8	μg/L	1	5/20/2022 08:23 PM
Benzo(a)anthracene	ND		19	μg/L	1	5/20/2022 08:23 PM
Benzo(a)pyrene	ND		19	μg/L	1	5/20/2022 08:23 PM
Benzo(b)fluoranthene	ND		19	μg/L	1	5/20/2022 08:23 PM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-103Lab ID: 22051511-03

Collection Date: 5/16/2022 12:49 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result		Report Limit	Units	Dilution Factor	Date Analyzed
Benzo(g,h,i)perylene	ND		19	μg/L	1	5/20/2022 08:23 PM
Benzo(k)fluoranthene	ND		19	μg/L	1	5/20/2022 08:23 PM
Bis(2-chloroethoxy)methane	ND		19	μg/L	1	5/20/2022 08:23 PM
Bis(2-chloroethyl)ether	ND		19	μg/L	1	5/20/2022 08:23 PM
Bis(2-chloroisopropyl)ether	ND		19	μg/L	1	5/20/2022 08:23 PM
Bis(2-ethylhexyl)phthalate	ND		19	μg/L	1	5/20/2022 08:23 PM
Butyl benzyl phthalate	ND		19	μg/L	1	5/20/2022 08:23 PM
Caprolactam	ND		38	μg/L	1	5/20/2022 08:23 PM
Carbazole	ND		19	μg/L	1	5/20/2022 08:23 PM
Chrysene	ND		19	μg/L	1	5/20/2022 08:23 PM
Dibenzo(a,h)anthracene	ND		19	μg/L	1	5/20/2022 08:23 PM
Dibenzofuran	ND		19	μg/L	1	5/20/2022 08:23 PM
Diethyl phthalate	ND		19	μg/L	1	5/20/2022 08:23 PM
Dimethyl phthalate	ND		19	μg/L	1	5/20/2022 08:23 PM
Di-n-butyl phthalate	ND		19	μg/L	1	5/20/2022 08:23 PM
Di-n-octyl phthalate	ND		19	μg/L	1	5/20/2022 08:23 PM
Fluoranthene	ND		19	μg/L	1	5/20/2022 08:23 PM
Fluorene	ND		19	μg/L	1	5/20/2022 08:23 PM
Hexachlorobenzene	ND		19	μg/L	1	5/20/2022 08:23 PM
Hexachlorobutadiene	ND		19	μg/L	1	5/20/2022 08:23 PM
Hexachlorocyclopentadiene	ND		19	μg/L	1	5/20/2022 08:23 PM
Hexachloroethane	ND		19	μg/L	1	5/20/2022 08:23 PM
Indeno(1,2,3-cd)pyrene	ND		19	μg/L	1	5/20/2022 08:23 PM
Isophorone	ND		19	μg/L	1	5/20/2022 08:23 PM
Naphthalene	ND		19	μg/L	1	5/20/2022 08:23 PM
Nitrobenzene	ND		19	μg/L	1	5/20/2022 08:23 PM
N-Nitrosodi-n-propylamine	ND		19	μg/L	1	5/20/2022 08:23 PM
N-Nitrosodiphenylamine	ND		19	μg/L	1	5/20/2022 08:23 PM
Pentachlorophenol	ND		19	μg/L	1	5/20/2022 08:23 PM
Phenanthrene	ND		19	μg/L	1	5/20/2022 08:23 PM
Phenol	ND		19	μg/L	1	5/20/2022 08:23 PM
Pyrene	ND		19	μg/L	1	5/20/2022 08:23 PM
Surr: 2,4,6-Tribromophenol	71.4		27-83	%REC	1	5/20/2022 08:23 PM
Surr: 2-Fluorobiphenyl	64.3		26-79	%REC	1	5/20/2022 08:23 PM
Surr: 2-Fluorophenol	<i>4</i> 2.6		13-56	%REC	1	5/20/2022 08:23 PM
Surr: 4-Terphenyl-d14	77.2		43-106	%REC	1	5/20/2022 08:23 PM
Surr: Nitrobenzene-d5	62.4		29-80	%REC	1	5/20/2022 08:23 PM
Surr: Phenol-d6	28.3		10-35	%REC	1	5/20/2022 08:23 PM
VOL 4511 5 000 41110 004400111100		_		_		

VOLATILE ORGANIC COMPOUNDS SW8260C Analyst: MF

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-103Lab ID: 22051511-03

Collection Date: 5/16/2022 12:49 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result Qua	Report Limit	Units	Dilution Factor	Date Analyzed
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/20/2022 12:43 AM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	5/20/2022 12:43 AM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/20/2022 12:43 AM
1,1,2-Trichlorotrifluoroethane	ND	1.0	μg/L	1	5/20/2022 12:43 AM
1,1-Dichloroethane	ND	1.0	μg/L	1	5/20/2022 12:43 AM
1,1-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 12:43 AM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/20/2022 12:43 AM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	5/20/2022 12:43 AM
1,2-Dibromoethane	ND	1.0	μg/L	1	5/20/2022 12:43 AM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 12:43 AM
1,2-Dichloroethane	ND	1.0	μg/L	1	5/20/2022 12:43 AM
1,2-Dichloropropane	ND	1.0	μg/L	1	5/20/2022 12:43 AM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 12:43 AM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 12:43 AM
2-Butanone	ND	5.0	μg/L	1	5/20/2022 12:43 AM
2-Hexanone	ND	5.0	μg/L	1	5/20/2022 12:43 AM
4-Methyl-2-pentanone	ND	1.0	μg/L	1	5/20/2022 12:43 AM
Acetone	ND	10	μg/L	1	5/20/2022 12:43 AM
Benzene	ND	1.0	μg/L	1	5/20/2022 12:43 AM
Bromodichloromethane	ND	1.0	μg/L	1	5/20/2022 12:43 AM
Bromoform	ND	1.0	μg/L	1	5/20/2022 12:43 AM
Bromomethane	ND	1.0	μg/L	1	5/20/2022 12:43 AM
Carbon disulfide	ND	1.0	μg/L	1	5/20/2022 12:43 AM
Carbon tetrachloride	ND	1.0	μg/L	1	5/20/2022 12:43 AM
Chlorobenzene	ND	1.0	μg/L	1	5/20/2022 12:43 AM
Chloroethane	ND	1.0	μg/L	1	5/20/2022 12:43 AM
Chloroform	ND	1.0	μg/L	1	5/20/2022 12:43 AM
Chloromethane	ND	1.0	μg/L	1	5/20/2022 12:43 AM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 12:43 AM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/20/2022 12:43 AM
Cyclohexane	ND	2.0	μg/L	1	5/20/2022 12:43 AM
Dibromochloromethane	ND	1.0	μg/L	1	5/20/2022 12:43 AM
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/20/2022 12:43 AM
Ethylbenzene	ND	1.0	μg/L	1	5/20/2022 12:43 AM
Isopropylbenzene	ND	1.0	μg/L	1	5/20/2022 12:43 AM
Methyl acetate	ND	2.0	μg/L	1	5/20/2022 12:43 AM
Methyl tert-butyl ether	ND	1.0	μg/L	1	5/20/2022 12:43 AM
Methylcyclohexane	ND	1.0	μg/L	1	5/20/2022 12:43 AM
Methylene chloride	ND	5.0	μg/L	1	5/20/2022 12:43 AM
Styrene	ND	1.0	μg/L	1	5/20/2022 12:43 AM

Client: The Mannik & Smith Group, Inc.

Project: Former Mount Pleasant Landfill Work Order: 22051511

Sample ID: MW-103 **Lab ID:** 22051511-03

Collection Date: 5/16/2022 12:49 PM Matrix: GROUNDWATER

Analyses	Result Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Tetrachloroethene	ND	1.0	μg/L	1	5/20/2022 12:43 AM
Toluene	ND	1.0	μg/L	1	5/20/2022 12:43 AM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 12:43 AM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/20/2022 12:43 AM
Trichloroethene	ND	1.0	μg/L	1	5/20/2022 12:43 AM
Trichlorofluoromethane	ND	1.0	μg/L	1	5/20/2022 12:43 AM
Vinyl chloride	ND	1.0	μg/L	1	5/20/2022 12:43 AM
Xylenes, Total	ND	3.0	μg/L	1	5/20/2022 12:43 AM
Surr: 1,2-Dichloroethane-d4	98.2	75-120	%REC	1	5/20/2022 12:43 AM
Surr: 4-Bromofluorobenzene	98.0	80-110	%REC	1	5/20/2022 12:43 AM
Surr: Dibromofluoromethane	105	85-115	%REC	1	5/20/2022 12:43 AM
Surr: Toluene-d8	107	85-110	%REC	1	5/20/2022 12:43 AM

Date: 01-Jun-2022

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-104Lab ID: 22051511-04

Collection Date: 5/16/2022 01:02 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
PCBS			SW8082	4	Prep: SW3511 5/20/22 16:59	Analyst: RM
Aroclor 1016	ND	ı	0.20	μg/L	1	5/21/2022 06:04 AM
Aroclor 1221	ND	ı	0.20	μg/L	1	5/21/2022 06:04 AM
Aroclor 1232	ND	ı	0.20	μg/L	1	5/21/2022 06:04 AM
Aroclor 1242	ND	ı	0.20	μg/L	1	5/21/2022 06:04 AM
Aroclor 1248	ND	ı	0.20	μg/L	1	5/21/2022 06:04 AM
Aroclor 1254	ND	ı	0.20	μg/L	1	5/21/2022 06:04 AM
Aroclor 1260	ND	ı	0.20	μg/L	1	5/21/2022 06:04 AM
Aroclor 1262	ND	ı	0.20	μg/L	1	5/21/2022 06:04 AM
Aroclor 1268	ND	ı	0.20	μg/L	1	5/21/2022 06:04 AM
PCBs, Total	ND	ı	0.20	μg/L	1	5/21/2022 06:04 AM
Surr: Decachlorobiphenyl	99.1	,	42-153	%REC	1	5/21/2022 06:04 AM
Surr: Tetrachloro-m-xylene	91.4	!	48-127	%REC	1	5/21/2022 06:04 AM
MERCURY BY CVAA (DISSOLVED)		SI		4	Prep: SW7470 5/19/22 11:03	Analyst: EJC
Mercury	ND	ı	0.00020	mg/L	1	5/19/2022 12:34 PM
METALS BY ICP-MS (DISSOLVED)			SW6020E	3	Prep: SW3015A 5/23/22 17:14	Analyst: STP
Aluminum	0.029)	0.010	mg/L	1	5/23/2022 07:22 PM
Antimony	ND	ı	0.0050	mg/L	1	5/23/2022 07:22 PM
Arsenic	ND)	0.0050	mg/L	1	5/23/2022 07:22 PM
Barium	0.086	i	0.0050	mg/L	1	5/23/2022 07:22 PM
Beryllium	ND)	0.0020	mg/L	1	5/23/2022 07:22 PM
Boron	0.025	1	0.020	mg/L	1	5/23/2022 07:22 PM
Cadmium	ND)	0.0020	mg/L	1	5/23/2022 07:22 PM
Chromium	ND)	0.0050	mg/L	1	5/23/2022 07:22 PM
Copper	ND)	0.0050	mg/L	1	5/23/2022 07:22 PM
Lead	ND)	0.0050	mg/L	1	5/23/2022 07:22 PM
Nickel	ND)	0.0050	mg/L	1	5/23/2022 07:22 PM
Selenium	ND)	0.0050	mg/L	1	5/23/2022 07:22 PM
Silver	ND)	0.0050	mg/L	1	5/23/2022 07:22 PM
Thallium	ND)	0.0050	mg/L	1	5/23/2022 07:22 PM
Zinc	ND)	0.010	mg/L	1	5/25/2022 04:57 PM
PFAS BY EPA 537 MODIFIED			E537 MO	D	Prep: E537 Mod 5/20/22 18:04	Analyst: ENS
Fluorotelomer Sulphonic Acid 4:2 (FtS 4:2)	ND	ı	4.9	ng/L	1	5/25/2022 05:13 AM
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	ND	ı	4.9	ng/L	1	5/25/2022 05:13 AM
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	ND	ı	4.9	ng/L	1	5/25/2022 05:13 AM
Perfluorobutanesulfonic Acid (PFBS)	ND	ı	4.9	ng/L	1	5/25/2022 05:13 AM
Perfluorobutanoic Acid (PFBA)	13	;	4.9	ng/L	1	5/25/2022 05:13 AM
Perfluorodecanesulfonic Acid (PFDS)	ND	ı	4.9		1	5/25/2022 05:13 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-104Lab ID: 22051511-04

Collection Date: 5/16/2022 01:02 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Perfluorodecanoic Acid (PFDA)	ND		4.9	ng/L	1	5/25/2022 05:13 AM
Perfluorododecanoic Acid (PFDoA)	ND		4.9	ng/L	1	5/25/2022 05:13 AM
Perfluoroheptanesulfonic Acid (PFHpS)	ND		4.9	ng/L	1	5/25/2022 05:13 AM
Perfluoroheptanoic Acid (PFHpA)	ND		4.9	ng/L	1	5/25/2022 05:13 AM
Perfluorohexanesulfonic Acid (PFHxS)	ND		4.9	ng/L	1	5/25/2022 05:13 AM
Perfluorohexanoic Acid (PFHxA)	ND		4.9	ng/L	1	5/25/2022 05:13 AM
Perfluorononanesulfonic Acid (PFNS)	ND		4.9	ng/L	1	5/25/2022 05:13 AM
Perfluorononanoic Acid (PFNA)	ND		4.9	ng/L	1	5/25/2022 05:13 AM
Perfluorooctanesulfonamide (PFOSA)	ND		4.9	ng/L	1	5/25/2022 05:13 AM
Perfluorooctanesulfonic Acid (PFOS)	ND		2.0	ng/L	1	5/25/2022 05:13 AM
Perfluorooctanoic Acid (PFOA)	ND		2.0	ng/L	1	5/25/2022 05:13 AM
Perfluoropentanesulfonic Acid (PFPeS)	ND		4.9	ng/L	1	5/25/2022 05:13 AM
Perfluoropentanoic Acid (PFPeA)	ND		4.9	ng/L	1	5/25/2022 05:13 AM
Perfluorotetradecanoic Acid (PFTeA)	ND		4.9	ng/L	1	5/25/2022 05:13 AM
Perfluorotridecanoic Acid (PFTriA)	ND		4.9	ng/L	1	5/25/2022 05:13 AM
Perfluoroundecanoic Acid (PFUnA)	ND		4.9	ng/L	1	5/25/2022 05:13 AM
N-Ethylperfluorooctanesulfonamidoacetic Acid	ND		4.9	ng/L	1	5/25/2022 05:13 AM
N-Methylperfluorooctanesulfonamidoacetic Acid	ND		4.9	ng/L	1	5/25/2022 05:13 AM
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND		4.9	ng/L	1	5/25/2022 05:13 AM
4,8-Dioxa-3H-perfluorononanoic Acid (DONA)	ND		4.9	ng/L	1	5/25/2022 05:13 AM
11CI-Pf3OUdS	ND		4.9	ng/L	1	5/25/2022 05:13 AM
9CI-PF3ONS	ND		4.9	ng/L	1	5/25/2022 05:13 AM
Surr: 13C2-FtS 4:2	112		50-150	%REC	1	5/25/2022 05:13 AM
Surr: 13C2-FtS 6:2	108		50-150	%REC	1	5/25/2022 05:13 AM
Surr: 13C2-FtS 8:2	115		50-150	%REC	1	5/25/2022 05:13 AM
Surr: 13C2-PFDA	86.9		50-150	%REC	1	5/25/2022 05:13 AM
Surr: 13C2-PFDoA	81.4		50-150	%REC	1	5/25/2022 05:13 AM
Surr: 13C2-PFHxA	87.9		50-150	%REC	1	5/25/2022 05:13 AM
Surr: 13C2-PFTeA	88.7		50-150	%REC	1	5/25/2022 05:13 AM
Surr: 13C2-PFUnA	96.5		50-150	%REC	1	5/25/2022 05:13 AM
Surr: 13C3-HFPO-DA	81.3		50-150	%REC	1	5/25/2022 05:13 AM
Surr: 13C3-PFBS	84.5		50-150	%REC	1	5/25/2022 05:13 AM
Surr: 13C4-PFBA	95.8		50-150	%REC	1	5/25/2022 05:13 AM
Surr: 13C4-PFHpA	94.4		50-150	%REC	1	5/25/2022 05:13 AM
Surr: 13C4-PFOA	96.6		50-150	%REC	1	5/25/2022 05:13 AM
Surr: 13C4-PFOS	85.8		50-150	%REC	1	5/25/2022 05:13 AM
Surr: 13C5-PFNA	117		50-150	%REC	1	5/25/2022 05:13 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-104Lab ID: 22051511-04

Collection Date: 5/16/2022 01:02 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 13C5-PFPeA	91.5	5	50-150	%REC	1	5/25/2022 05:13 AM
Surr: 13C8-FOSA	121	1	50-150	%REC	1	5/25/2022 05:13 AM
Surr: 1802-PFHxS	109)	50-150	%REC	1	5/25/2022 05:13 AM
Surr: d5-N-EtFOSAA	129)	50-150	%REC	1	5/25/2022 05:13 AM
Surr: d3-N-MeFOSAA	92.0)	50-150	%REC	1	5/25/2022 05:13 AM
SEMI-VOLATILE ORGANIC COMPOUNDS			SW846 8	270D	Prep: SW3510 5/20/22 14:40	Analyst: EE
1,1`-Biphenyl	ND)	20	μg/L	1	5/20/2022 08:43 PM
2,4,5-Trichlorophenol	ND)	20	μg/L	1	5/20/2022 08:43 PM
2,4,6-Trichlorophenol	ND)	20	μg/L	1	5/20/2022 08:43 PM
2,4-Dichlorophenol	ND)	20	μg/L	1	5/20/2022 08:43 PM
2,4-Dimethylphenol	ND)	20	μg/L	1	5/20/2022 08:43 PM
2,4-Dinitrophenol	ND)	20	μg/L	1	5/20/2022 08:43 PM
2,4-Dinitrotoluene	ND)	20	μg/L	1	5/20/2022 08:43 PM
2,6-Dinitrotoluene	ND)	20	μg/L	1	5/20/2022 08:43 PM
2-Chloronaphthalene	ND)	20	μg/L	1	5/20/2022 08:43 PM
2-Chlorophenol	ND)	20	μg/L	1	5/20/2022 08:43 PM
2-Methylnaphthalene	ND)	20	μg/L	1	5/20/2022 08:43 PM
2-Methylphenol	ND)	20	μg/L	1	5/20/2022 08:43 PM
2-Nitroaniline	ND)	20	μg/L	1	5/20/2022 08:43 PM
2-Nitrophenol	ND)	20	μg/L	1	5/20/2022 08:43 PM
3&4-Methylphenol	ND)	20	μg/L	1	5/20/2022 08:43 PM
3,3'-Dichlorobenzidine	ND)	20	μg/L	1	5/20/2022 08:43 PM
3-Nitroaniline	ND)	20	μg/L	1	5/20/2022 08:43 PM
4,6-Dinitro-2-methylphenol	ND)	20	μg/L	1	5/20/2022 08:43 PM
4-Bromophenyl phenyl ether	ND)	20	μg/L	1	5/20/2022 08:43 PM
4-Chloro-3-methylphenol	ND)	20	μg/L	1	5/20/2022 08:43 PM
4-Chloroaniline	ND)	20	μg/L	1	5/20/2022 08:43 PM
4-Chlorophenyl phenyl ether	ND)	20	μg/L	1	5/20/2022 08:43 PM
4-Nitroaniline	ND)	20	μg/L	1	5/20/2022 08:43 PM
4-Nitrophenol	ND)	20	μg/L	1	5/20/2022 08:43 PM
Acenaphthene	ND)	20	μg/L	1	5/20/2022 08:43 PM
Acenaphthylene	ND	1	20	μg/L	1	5/20/2022 08:43 PM
Acetophenone	ND	1	4.1	μg/L	1	5/20/2022 08:43 PM
Anthracene	ND	1	20	μg/L	1	5/20/2022 08:43 PM
Atrazine	ND	1	4.1	μg/L	1	5/20/2022 08:43 PM
Benzaldehyde	ND	1	4.1	μg/L	1	5/20/2022 08:43 PM
Benzo(a)anthracene	ND	1	20	μg/L	1	5/20/2022 08:43 PM
Benzo(a)pyrene	ND)	20	μg/L	1	5/20/2022 08:43 PM
Benzo(b)fluoranthene	ND)	20	μg/L	1	5/20/2022 08:43 PM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-104Lab ID: 22051511-04

Collection Date: 5/16/2022 01:02 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Benzo(g,h,i)perylene	ND		20	μg/L	1	5/20/2022 08:43 PM
Benzo(k)fluoranthene	ND		20	μg/L	1	5/20/2022 08:43 PM
Bis(2-chloroethoxy)methane	ND		20	μg/L	1	5/20/2022 08:43 PM
Bis(2-chloroethyl)ether	ND		20	μg/L	1	5/20/2022 08:43 PM
Bis(2-chloroisopropyl)ether	ND		20	μg/L	1	5/20/2022 08:43 PM
Bis(2-ethylhexyl)phthalate	ND		20	μg/L	1	5/20/2022 08:43 PM
Butyl benzyl phthalate	ND		20	μg/L	1	5/20/2022 08:43 PM
Caprolactam	ND		41	μg/L	1	5/20/2022 08:43 PM
Carbazole	ND		20	μg/L	1	5/20/2022 08:43 PM
Chrysene	ND		20	μg/L	1	5/20/2022 08:43 PM
Dibenzo(a,h)anthracene	ND		20	μg/L	1	5/20/2022 08:43 PM
Dibenzofuran	ND		20	μg/L	1	5/20/2022 08:43 PM
Diethyl phthalate	ND		20	μg/L	1	5/20/2022 08:43 PM
Dimethyl phthalate	ND		20	μg/L	1	5/20/2022 08:43 PM
Di-n-butyl phthalate	ND		20	μg/L	1	5/20/2022 08:43 PM
Di-n-octyl phthalate	ND		20	μg/L	1	5/20/2022 08:43 PM
Fluoranthene	ND		20	μg/L	1	5/20/2022 08:43 PM
Fluorene	ND		20	μg/L	1	5/20/2022 08:43 PM
Hexachlorobenzene	ND	ı	20	μg/L	1	5/20/2022 08:43 PM
Hexachlorobutadiene	ND	ı	20	μg/L	1	5/20/2022 08:43 PM
Hexachlorocyclopentadiene	ND	ı	20	μg/L	1	5/20/2022 08:43 PM
Hexachloroethane	ND	ı	20	μg/L	1	5/20/2022 08:43 PM
Indeno(1,2,3-cd)pyrene	ND	ı	20	μg/L	1	5/20/2022 08:43 PM
Isophorone	ND	ı	20	μg/L	1	5/20/2022 08:43 PM
Naphthalene	ND	1	20	μg/L	1	5/20/2022 08:43 PM
Nitrobenzene	ND		20	μg/L	1	5/20/2022 08:43 PM
N-Nitrosodi-n-propylamine	ND		20	μg/L	1	5/20/2022 08:43 PM
N-Nitrosodiphenylamine	ND		20	μg/L	1	5/20/2022 08:43 PM
Pentachlorophenol	ND		20	μg/L	1	5/20/2022 08:43 PM
Phenanthrene	ND		20	μg/L	1	5/20/2022 08:43 PM
Phenol	ND		20	μg/L	1	5/20/2022 08:43 PM
Pyrene	ND		20	μg/L	1	5/20/2022 08:43 PM
Surr: 2,4,6-Tribromophenol	63.4	!	27-83	%REC	1	5/20/2022 08:43 PM
Surr: 2-Fluorobiphenyl	61.9)	26-79	%REC	1	5/20/2022 08:43 PM
Surr: 2-Fluorophenol	38.7	•	13-56	%REC	1	5/20/2022 08:43 PM
Surr: 4-Terphenyl-d14	75.3	:	43-106	%REC	1	5/20/2022 08:43 PM
Surr: Nitrobenzene-d5	60.6	;	29-80	%REC	1	5/20/2022 08:43 PM
Surr: Phenol-d6	25.6	;	10-35	%REC	1	5/20/2022 08:43 PM
VOLATILE ORGANIC COMPOUNDS			CMOSEO			Analyst: ME

VOLATILE ORGANIC COMPOUNDS SW8260C Analyst: MF

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-104Lab ID: 22051511-04

Collection Date: 5/16/2022 01:02 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,1,1-Trichloroethane	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
1,1,2,2-Tetrachloroethane	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
1,1,2-Trichloroethane	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
1,1,2-Trichlorotrifluoroethane	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
1,1-Dichloroethane	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
1,1-Dichloroethene	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
1,2,4-Trichlorobenzene	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
1,2-Dibromo-3-chloropropane	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
1,2-Dibromoethane	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
1,2-Dichlorobenzene	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
1,2-Dichloroethane	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
1,2-Dichloropropane	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
1,3-Dichlorobenzene	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
1,4-Dichlorobenzene	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
2-Butanone	NE	ND		μg/L	1	5/20/2022 01:01 AM
2-Hexanone	NE	ND		μg/L	1	5/20/2022 01:01 AM
4-Methyl-2-pentanone	NE	ND		μg/L	1	5/20/2022 01:01 AM
Acetone	NE)	10	μg/L	1	5/20/2022 01:01 AM
Benzene	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
Bromodichloromethane	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
Bromoform	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
Bromomethane	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
Carbon disulfide	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
Carbon tetrachloride	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
Chlorobenzene	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
Chloroethane	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
Chloroform	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
Chloromethane	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
cis-1,2-Dichloroethene	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
cis-1,3-Dichloropropene	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
Cyclohexane	NE)	2.0	μg/L	1	5/20/2022 01:01 AM
Dibromochloromethane	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
Dichlorodifluoromethane	NE)	1.0	μg/L	1	5/20/2022 01:01 AM
Ethylbenzene	NE		1.0	μg/L	1	5/20/2022 01:01 AM
Isopropylbenzene	NE		1.0	μg/L	1	5/20/2022 01:01 AM
Methyl acetate	NE		2.0	μg/L	1	5/20/2022 01:01 AM
Methyl tert-butyl ether	NE		1.0	μg/L	1	5/20/2022 01:01 AM
Methylcyclohexane	NE		1.0	μg/L	1	5/20/2022 01:01 AM
Methylene chloride	NE		5.0	μg/L	1	5/20/2022 01:01 AM
Styrene	NE		1.0	μg/L	1	5/20/2022 01:01 AM

Client: The Mannik & Smith Group, Inc.

Project: Former Mount Pleasant Landfill Work Order: 22051511

Sample ID: MW-104 **Lab ID:** 22051511-04

Collection Date: 5/16/2022 01:02 PM Matrix: GROUNDWATER

Analyses	Result	Report Qual Limit	Units	Dilution Factor	Date Analyzed
Tetrachloroethene	ND	1.0	μg/L	1	5/20/2022 01:01 AM
Toluene	ND	1.0	μg/L	1	5/20/2022 01:01 AM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 01:01 AM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/20/2022 01:01 AM
Trichloroethene	ND	1.0	μg/L	1	5/20/2022 01:01 AM
Trichlorofluoromethane	ND	1.0	μg/L	1	5/20/2022 01:01 AM
Vinyl chloride	ND	1.0	μg/L	1	5/20/2022 01:01 AM
Xylenes, Total	ND	3.0	μg/L	1	5/20/2022 01:01 AM
Surr: 1,2-Dichloroethane-d4	100	75-120	%REC	1	5/20/2022 01:01 AM
Surr: 4-Bromofluorobenzene	90.6	80-110	%REC	1	5/20/2022 01:01 AM
Surr: Dibromofluoromethane	102	85-115	%REC	1	5/20/2022 01:01 AM
Surr: Toluene-d8	97.2	85-110	%REC	1	5/20/2022 01:01 AM

Date: 01-Jun-2022

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-105Lab ID: 22051511-05

Collection Date: 5/16/2022 01:42 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
PCBS			SW8082	4	Prep: SW3511 5/20/22 16:59	Analyst: RM
Aroclor 1016	ND)	0.20	μg/L	1	5/21/2022 06:17 AM
Aroclor 1221	ND)	0.20	μg/L	1	5/21/2022 06:17 AM
Aroclor 1232	ND)	0.20	μg/L	1	5/21/2022 06:17 AM
Aroclor 1242	ND)	0.20	μg/L	1	5/21/2022 06:17 AM
Aroclor 1248	ND)	0.20	μg/L	1	5/21/2022 06:17 AM
Aroclor 1254	ND)	0.20	μg/L	1	5/21/2022 06:17 AM
Aroclor 1260	ND)	0.20	μg/L	1	5/21/2022 06:17 AM
Aroclor 1262	ND)	0.20	μg/L	1	5/21/2022 06:17 AM
Aroclor 1268	ND)	0.20	μg/L	1	5/21/2022 06:17 AM
PCBs, Total	ND)	0.20	μg/L	1	5/21/2022 06:17 AM
Surr: Decachlorobiphenyl	89.3	}	42-153	%REC	1	5/21/2022 06:17 AM
Surr: Tetrachloro-m-xylene	89.0)	48-127	%REC	1	5/21/2022 06:17 AM
MERCURY BY CVAA (DISSOLVED)		SW7470		4	Prep: SW7470 5/19/22 11:03	Analyst: EJC
Mercury	ND)	0.00020	mg/L	1	5/19/2022 12:36 PM
METALS BY ICP-MS (DISSOLVED)			SW6020E	3	Prep: SW3015A 5/23/22 17:14	Analyst: STP
Aluminum	ND)	0.010	mg/L	1	5/23/2022 07:23 PM
Antimony	ND)	0.0050	mg/L	1	5/23/2022 07:23 PM
Arsenic	0.016	;	0.0050	mg/L	1	5/23/2022 07:23 PM
Barium	0.14	ļ	0.0050	mg/L	1	5/23/2022 07:23 PM
Beryllium	ND)	0.0020	mg/L	1	5/23/2022 07:23 PM
Boron	0.028	}	0.020	mg/L	1	5/23/2022 07:23 PM
Cadmium	ND)	0.0020	mg/L	1	5/23/2022 07:23 PM
Chromium	ND)	0.0050	mg/L	1	5/23/2022 07:23 PM
Copper	ND)	0.0050	mg/L	1	5/23/2022 07:23 PM
Lead	ND)	0.0050	mg/L	1	5/23/2022 07:23 PM
Nickel	ND)	0.0050	mg/L	1	5/23/2022 07:23 PM
Selenium	ND)	0.0050	mg/L	1	5/23/2022 07:23 PM
Silver	ND)	0.0050	mg/L	1	5/23/2022 07:23 PM
Thallium	ND)	0.0050	mg/L	1	5/23/2022 07:23 PM
Zinc	ND)	0.010	mg/L	1	5/23/2022 07:23 PM
PFAS BY EPA 537 MODIFIED			E537 MO	D	Prep: E537 Mod 5/20/22 18:04	Analyst: ENS
Fluorotelomer Sulphonic Acid 4:2 (FtS 4:2)	ND)	4.8	ng/L	1	5/25/2022 05:21 AM
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	ND		4.8	ng/L	1	5/25/2022 05:21 AM
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	ND)	4.8	ng/L	1	5/25/2022 05:21 AM
Perfluorobutanesulfonic Acid (PFBS)	11		4.8	ng/L	1	5/25/2022 05:21 AM
Perfluorobutanoic Acid (PFBA)	65	;	4.8	ng/L	1	5/25/2022 05:21 AM
Perfluorodecanesulfonic Acid (PFDS)	ND		4.8	_	1	5/25/2022 05:21 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-105Lab ID: 22051511-05

Collection Date: 5/16/2022 01:42 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Perfluorodecanoic Acid (PFDA)	ND		4.8	ng/L	1	5/25/2022 05:21 AM
Perfluorododecanoic Acid (PFDoA)	ND		4.8	ng/L	1	5/25/2022 05:21 AM
Perfluoroheptanesulfonic Acid (PFHpS)	ND		4.8	ng/L	1	5/25/2022 05:21 AM
Perfluoroheptanoic Acid (PFHpA)	ND		4.8	ng/L	1	5/25/2022 05:21 AM
Perfluorohexanesulfonic Acid (PFHxS)	ND		4.8	ng/L	1	5/25/2022 05:21 AM
Perfluorohexanoic Acid (PFHxA)	5.3		4.8	ng/L	1	5/25/2022 05:21 AM
Perfluorononanesulfonic Acid (PFNS)	ND		4.8	ng/L	1	5/25/2022 05:21 AM
Perfluorononanoic Acid (PFNA)	ND		4.8	ng/L	1	5/25/2022 05:21 AM
Perfluorooctanesulfonamide (PFOSA)	ND		4.8	ng/L	1	5/25/2022 05:21 AM
Perfluorooctanesulfonic Acid (PFOS)	ND		1.9	ng/L	1	5/25/2022 05:21 AM
Perfluorooctanoic Acid (PFOA)	5.8		1.9	ng/L	1	5/25/2022 05:21 AM
Perfluoropentanesulfonic Acid (PFPeS)	ND		4.8	ng/L	1	5/25/2022 05:21 AM
Perfluoropentanoic Acid (PFPeA)	11		4.8	ng/L	1	5/25/2022 05:21 AM
Perfluorotetradecanoic Acid (PFTeA)	ND		4.8	ng/L	1	5/25/2022 05:21 AM
Perfluorotridecanoic Acid (PFTriA)	ND		4.8	ng/L	1	5/25/2022 05:21 AM
Perfluoroundecanoic Acid (PFUnA)	ND		4.8	ng/L	1	5/25/2022 05:21 AM
N-Ethylperfluorooctanesulfonamidoacetic Acid	ND		4.8	ng/L	1	5/25/2022 05:21 AM
N-Methylperfluorooctanesulfonamidoacetic Acid	ND		4.8	ng/L	1	5/25/2022 05:21 AM
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND		4.8	ng/L	1	5/25/2022 05:21 AM
4,8-Dioxa-3H-perfluorononanoic Acid (DONA)	ND		4.8	ng/L	1	5/25/2022 05:21 AM
11CI-Pf3OUdS	ND		4.8	ng/L	1	5/25/2022 05:21 AM
9CI-PF3ONS	ND		4.8	ng/L	1	5/25/2022 05:21 AM
Surr: 13C2-FtS 4:2	171	S	50-150	%REC	1	5/25/2022 05:21 AM
Surr: 13C2-FtS 6:2	130		50-150	%REC	1	5/25/2022 05:21 AM
Surr: 13C2-FtS 8:2	113		50-150	%REC	1	5/25/2022 05:21 AM
Surr: 13C2-PFDA	90.1		50-150	%REC	1	5/25/2022 05:21 AM
Surr: 13C2-PFDoA	89.6		50-150	%REC	1	5/25/2022 05:21 AM
Surr: 13C2-PFHxA	104		50-150	%REC	1	5/25/2022 05:21 AM
Surr: 13C2-PFTeA	92.0		50-150	%REC	1	5/25/2022 05:21 AM
Surr: 13C2-PFUnA	91.1		50-150	%REC	1	5/25/2022 05:21 AM
Surr: 13C3-HFPO-DA	97.1		50-150	%REC	1	5/25/2022 05:21 AM
Surr: 13C3-PFBS	87.8		50-150	%REC	1	5/25/2022 05:21 AM
Surr: 13C4-PFBA	104		50-150	%REC	1	5/25/2022 05:21 AM
Surr: 13C4-PFHpA	87.6		50-150	%REC	1	5/25/2022 05:21 AM
Surr: 13C4-PFOA	92.6		50-150	%REC	1	5/25/2022 05:21 AM
Surr: 13C4-PFOS	91.3		50-150	%REC	1	5/25/2022 05:21 AM
Surr: 13C5-PFNA	110		50-150	%REC	1	5/25/2022 05:21 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-105Lab ID: 22051511-05

Collection Date: 5/16/2022 01:42 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 13C5-PFPeA	97.0)	50-150	%REC	1	5/25/2022 05:21 AM
Surr: 13C8-FOSA	98.1		50-150	%REC	1	5/25/2022 05:21 AM
Surr: 1802-PFHxS	93.7	•	50-150	%REC	1	5/25/2022 05:21 AM
Surr: d5-N-EtFOSAA	118	}	50-150	%REC	1	5/25/2022 05:21 AM
Surr: d3-N-MeFOSAA	95.2	•	50-150	%REC	1	5/25/2022 05:21 AM
SEMI-VOLATILE ORGANIC COMPOUNDS			SW846 8	270D	Prep: SW3510 5/20/22 14:40	Analyst: EE
1,1`-Biphenyl	ND	ı	19	μg/L	1	5/20/2022 09:04 PM
2,4,5-Trichlorophenol	ND	ı	19	μg/L	1	5/20/2022 09:04 PM
2,4,6-Trichlorophenol	ND)	19	μg/L	1	5/20/2022 09:04 PM
2,4-Dichlorophenol	ND)	19	μg/L	1	5/20/2022 09:04 PM
2,4-Dimethylphenol	ND)	19	μg/L	1	5/20/2022 09:04 PM
2,4-Dinitrophenol	ND)	19	μg/L	1	5/20/2022 09:04 PM
2,4-Dinitrotoluene	ND)	19	μg/L	1	5/20/2022 09:04 PM
2,6-Dinitrotoluene	ND)	19	μg/L	1	5/20/2022 09:04 PM
2-Chloronaphthalene	ND)	19	μg/L	1	5/20/2022 09:04 PM
2-Chlorophenol	ND)	19	μg/L	1	5/20/2022 09:04 PM
2-Methylnaphthalene	ND)	19	μg/L	1	5/20/2022 09:04 PM
2-Methylphenol	ND)	19	μg/L	1	5/20/2022 09:04 PM
2-Nitroaniline	ND)	19	μg/L	1	5/20/2022 09:04 PM
2-Nitrophenol	ND)	19	μg/L	1	5/20/2022 09:04 PM
3&4-Methylphenol	ND)	19	μg/L	1	5/20/2022 09:04 PM
3,3'-Dichlorobenzidine	ND)	19	μg/L	1	5/20/2022 09:04 PM
3-Nitroaniline	ND)	19	μg/L	1	5/20/2022 09:04 PM
4,6-Dinitro-2-methylphenol	ND)	19	μg/L	1	5/20/2022 09:04 PM
4-Bromophenyl phenyl ether	ND)	19	μg/L	1	5/20/2022 09:04 PM
4-Chloro-3-methylphenol	ND)	19	μg/L	1	5/20/2022 09:04 PM
4-Chloroaniline	ND)	19	μg/L	1	5/20/2022 09:04 PM
4-Chlorophenyl phenyl ether	ND)	19	μg/L	1	5/20/2022 09:04 PM
4-Nitroaniline	ND)	19	μg/L	1	5/20/2022 09:04 PM
4-Nitrophenol	ND)	19	μg/L	1	5/20/2022 09:04 PM
Acenaphthene	ND)	19	μg/L	1	5/20/2022 09:04 PM
Acenaphthylene	ND	ı	19	μg/L	1	5/20/2022 09:04 PM
Acetophenone	ND	ı	3.9	μg/L	1	5/20/2022 09:04 PM
Anthracene	ND	ı	19	μg/L	1	5/20/2022 09:04 PM
Atrazine	ND	ı	3.9	μg/L	1	5/20/2022 09:04 PM
Benzaldehyde	ND	ı	3.9	μg/L	1	5/20/2022 09:04 PM
Benzo(a)anthracene	ND	ı	19	μg/L	1	5/20/2022 09:04 PM
Benzo(a)pyrene	ND)	19	μg/L	1	5/20/2022 09:04 PM
Benzo(b)fluoranthene	ND)	19	μg/L	1	5/20/2022 09:04 PM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-105Lab ID: 22051511-05

Collection Date: 5/16/2022 01:42 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Benzo(g,h,i)perylene	ND		19	μg/L	1	5/20/2022 09:04 PM
Benzo(k)fluoranthene	ND		19	μg/L	1	5/20/2022 09:04 PM
Bis(2-chloroethoxy)methane	ND		19	μg/L	1	5/20/2022 09:04 PM
Bis(2-chloroethyl)ether	ND		19	μg/L	1	5/20/2022 09:04 PM
Bis(2-chloroisopropyl)ether	ND		19	μg/L	1	5/20/2022 09:04 PM
Bis(2-ethylhexyl)phthalate	ND		19	μg/L	1	5/20/2022 09:04 PM
Butyl benzyl phthalate	ND		19	μg/L	1	5/20/2022 09:04 PM
Caprolactam	ND		39	μg/L	1	5/20/2022 09:04 PM
Carbazole	ND		19	μg/L	1	5/20/2022 09:04 PM
Chrysene	ND		19	μg/L	1	5/20/2022 09:04 PM
Dibenzo(a,h)anthracene	ND		19	μg/L	1	5/20/2022 09:04 PM
Dibenzofuran	ND		19	μg/L	1	5/20/2022 09:04 PM
Diethyl phthalate	ND		19	μg/L	1	5/20/2022 09:04 PM
Dimethyl phthalate	ND		19	μg/L	1	5/20/2022 09:04 PM
Di-n-butyl phthalate	ND		19	μg/L	1	5/20/2022 09:04 PM
Di-n-octyl phthalate	ND		19	μg/L	1	5/20/2022 09:04 PM
Fluoranthene	ND		19	μg/L	1	5/20/2022 09:04 PM
Fluorene	ND		19	μg/L	1	5/20/2022 09:04 PM
Hexachlorobenzene	ND		19	μg/L	1	5/20/2022 09:04 PM
Hexachlorobutadiene	ND		19	μg/L	1	5/20/2022 09:04 PM
Hexachlorocyclopentadiene	ND		19	μg/L	1	5/20/2022 09:04 PM
Hexachloroethane	ND		19	μg/L	1	5/20/2022 09:04 PM
Indeno(1,2,3-cd)pyrene	ND		19	μg/L	1	5/20/2022 09:04 PM
Isophorone	ND		19	μg/L	1	5/20/2022 09:04 PM
Naphthalene	ND		19	μg/L	1	5/20/2022 09:04 PM
Nitrobenzene	ND		19	μg/L	1	5/20/2022 09:04 PM
N-Nitrosodi-n-propylamine	ND		19	μg/L	1	5/20/2022 09:04 PM
N-Nitrosodiphenylamine	ND		19	μg/L	1	5/20/2022 09:04 PM
Pentachlorophenol	ND		19	μg/L	1	5/20/2022 09:04 PM
Phenanthrene	ND		19	μg/L	1	5/20/2022 09:04 PM
Phenol	ND		19	μg/L	1	5/20/2022 09:04 PM
Pyrene	ND		19	μg/L	1	5/20/2022 09:04 PM
Surr: 2,4,6-Tribromophenol	70.6	;	27-83	%REC	1	5/20/2022 09:04 PM
Surr: 2-Fluorobiphenyl	64.3	:	26-79	%REC	1	5/20/2022 09:04 PM
Surr: 2-Fluorophenol	39.6	;	13-56	%REC	1	5/20/2022 09:04 PM
Surr: 4-Terphenyl-d14	79.5	i	43-106	%REC	1	5/20/2022 09:04 PM
Surr: Nitrobenzene-d5	64.9)	29-80	%REC	1	5/20/2022 09:04 PM
Surr: Phenol-d6	27.0)	10-35	%REC	1	5/20/2022 09:04 PM
VOL 450 5 000 4100 001100			011/0000	_		

VOLATILE ORGANIC COMPOUNDS SW8260C Analyst: MF

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-105Lab ID: 22051511-05

Collection Date: 5/16/2022 01:42 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Report Qual Limit	Units	Dilution Factor	Date Analyzed
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/20/2022 01:19 AM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	5/20/2022 01:19 AM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/20/2022 01:19 AM
1,1,2-Trichlorotrifluoroethane	ND	1.0	μg/L	1	5/20/2022 01:19 AM
1,1-Dichloroethane	ND	1.0	μg/L	1	5/20/2022 01:19 AM
1,1-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 01:19 AM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/20/2022 01:19 AM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	5/20/2022 01:19 AM
1,2-Dibromoethane	ND	1.0	μg/L	1	5/20/2022 01:19 AM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 01:19 AM
1,2-Dichloroethane	ND	1.0	μg/L	1	5/20/2022 01:19 AM
1,2-Dichloropropane	ND	1.0	μg/L	1	5/20/2022 01:19 AM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 01:19 AM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 01:19 AM
2-Butanone	ND	5.0	μg/L	1	5/20/2022 01:19 AM
2-Hexanone	ND	5.0	μg/L	1	5/20/2022 01:19 AM
4-Methyl-2-pentanone	ND	1.0	μg/L	1	5/20/2022 01:19 AM
Acetone	ND	10	μg/L	1	5/20/2022 01:19 AM
Benzene	ND	1.0	μg/L	1	5/20/2022 01:19 AM
Bromodichloromethane	ND	1.0	μg/L	1	5/20/2022 01:19 AM
Bromoform	ND	1.0	μg/L	1	5/20/2022 01:19 AM
Bromomethane	ND	1.0	μg/L	1	5/20/2022 01:19 AM
Carbon disulfide	ND	1.0	μg/L	1	5/20/2022 01:19 AM
Carbon tetrachloride	ND	1.0	μg/L	1	5/20/2022 01:19 AM
Chlorobenzene	ND	1.0	μg/L	1	5/20/2022 01:19 AM
Chloroethane	ND	1.0	μg/L	1	5/20/2022 01:19 AM
Chloroform	ND	1.0	μg/L	1	5/20/2022 01:19 AM
Chloromethane	ND	1.0	μg/L	1	5/20/2022 01:19 AM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 01:19 AM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/20/2022 01:19 AM
Cyclohexane	ND	2.0	μg/L	1	5/20/2022 01:19 AM
Dibromochloromethane	ND	1.0	μg/L	1	5/20/2022 01:19 AM
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/20/2022 01:19 AM
Ethylbenzene	ND	1.0	μg/L	1	5/20/2022 01:19 AM
Isopropylbenzene	ND	1.0	μg/L	1	5/20/2022 01:19 AM
Methyl acetate	ND	2.0	μg/L	1	5/20/2022 01:19 AM
Methyl tert-butyl ether	ND	1.0	μg/L	1	5/20/2022 01:19 AM
Methylcyclohexane	ND	1.0	μg/L	1	5/20/2022 01:19 AM
Methylene chloride	ND	5.0	μg/L	1	5/20/2022 01:19 AM
Styrene	ND	1.0	μg/L	1	5/20/2022 01:19 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-105Lab ID: 22051511-05

Collection Date: 5/16/2022 01:42 PM Matrix: GROUNDWATER

Analyses	Result Qua	Report l Limit	Units	Dilution Factor	Date Analyzed
Tetrachloroethene	ND	1.0	μg/L	1	5/20/2022 01:19 AM
Toluene	ND	1.0	μg/L	1	5/20/2022 01:19 AM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 01:19 AM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/20/2022 01:19 AM
Trichloroethene	ND	1.0	μg/L	1	5/20/2022 01:19 AM
Trichlorofluoromethane	ND	1.0	μg/L	1	5/20/2022 01:19 AM
Vinyl chloride	ND	1.0	μg/L	1	5/20/2022 01:19 AM
Xylenes, Total	ND	3.0	μg/L	1	5/20/2022 01:19 AM
Surr: 1,2-Dichloroethane-d4	99.4	75-120	%REC	1	5/20/2022 01:19 AM
Surr: 4-Bromofluorobenzene	89.4	80-110	%REC	1	5/20/2022 01:19 AM
Surr: Dibromofluoromethane	98.6	85-115	%REC	1	5/20/2022 01:19 AM
Surr: Toluene-d8	104	85-110	%REC	1	5/20/2022 01:19 AM

Date: 01-Jun-2022

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-106Lab ID: 22051511-06

Collection Date: 5/16/2022 02:10 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
PCBS			SW8082	4	Prep: SW3511 5/20/22 16:59	Analyst: RM
Aroclor 1016	ND		0.20	μg/L	1	5/21/2022 06:30 AM
Aroclor 1221	ND		0.20	μg/L	1	5/21/2022 06:30 AM
Aroclor 1232	ND		0.20	μg/L	1	5/21/2022 06:30 AM
Aroclor 1242	ND		0.20	μg/L	1	5/21/2022 06:30 AM
Aroclor 1248	ND		0.20	μg/L	1	5/21/2022 06:30 AM
Aroclor 1254	ND		0.20	μg/L	1	5/21/2022 06:30 AM
Aroclor 1260	ND		0.20	μg/L	1	5/21/2022 06:30 AM
Aroclor 1262	ND		0.20	μg/L	1	5/21/2022 06:30 AM
Aroclor 1268	ND		0.20	μg/L	1	5/21/2022 06:30 AM
PCBs, Total	ND		0.20	μg/L	1	5/21/2022 06:30 AM
Surr: Decachlorobiphenyl	106	;	42-153	%REC	1	5/21/2022 06:30 AM
Surr: Tetrachloro-m-xylene	91.8	}	48-127	%REC	1	5/21/2022 06:30 AM
MERCURY BY CVAA (DISSOLVED)			SW7470	4	Prep: SW7470 5/19/22 11:03	Analyst: EJC
Mercury	ND		0.00020	mg/L	1	5/19/2022 12:38 PM
METALS BY ICP-MS (DISSOLVED)			SW6020E	3	Prep: SW3015A 5/23/22 17:14	Analyst: STP
Aluminum	0.011		0.010	mg/L	1	5/23/2022 07:25 PM
Antimony	ND		0.0050	mg/L	1	5/23/2022 07:25 PM
Arsenic	ND		0.0050	mg/L	1	5/23/2022 07:25 PM
Barium	0.074		0.0050	mg/L	1	5/23/2022 07:25 PM
Beryllium	ND		0.0020	mg/L	1	5/23/2022 07:25 PM
Boron	0.42		0.020	mg/L	1	5/23/2022 07:25 PM
Cadmium	ND		0.0020	mg/L	1	5/23/2022 07:25 PM
Chromium	ND		0.0050	mg/L	1	5/23/2022 07:25 PM
Copper	ND		0.0050	mg/L	1	5/23/2022 07:25 PM
Lead	ND		0.0050	mg/L	1	5/23/2022 07:25 PM
Nickel	ND		0.0050	mg/L	1	5/23/2022 07:25 PM
Selenium	ND		0.0050	mg/L	1	5/23/2022 07:25 PM
Silver	ND		0.0050	mg/L	1	5/23/2022 07:25 PM
Thallium	ND		0.0050	mg/L	1	5/23/2022 07:25 PM
Zinc	ND		0.010	mg/L	1	5/25/2022 04:58 PM
PFAS BY EPA 537 MODIFIED			E537 MO	D	Prep: E537 Mod 5/20/22 18:04	Analyst: ENS
Fluorotelomer Sulphonic Acid 4:2 (FtS 4:2)	ND		5.0	ng/L	1	5/25/2022 05:29 AM
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	ND		5.0	ng/L	1	5/25/2022 05:29 AM
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	ND		5.0	ng/L	1	5/25/2022 05:29 AM
Perfluorobutanesulfonic Acid (PFBS)	35		5.0	ng/L	1	5/25/2022 05:29 AM
Perfluorobutanoic Acid (PFBA)	270		5.0	ng/L	1	5/25/2022 05:29 AM
Perfluorodecanesulfonic Acid (PFDS)	ND		5.0		1	5/25/2022 05:29 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-106Lab ID: 22051511-06

Collection Date: 5/16/2022 02:10 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Perfluorodecanoic Acid (PFDA)	ND		5.0	ng/L	1	5/25/2022 05:29 AM
Perfluorododecanoic Acid (PFDoA)	ND		5.0	ng/L	1	5/25/2022 05:29 AM
Perfluoroheptanesulfonic Acid (PFHpS)	ND		5.0	ng/L	1	5/25/2022 05:29 AM
Perfluoroheptanoic Acid (PFHpA)	25		5.0	ng/L	1	5/25/2022 05:29 AM
Perfluorohexanesulfonic Acid (PFHxS)	29		5.0	ng/L	1	5/25/2022 05:29 AM
Perfluorohexanoic Acid (PFHxA)	28		5.0	ng/L	1	5/25/2022 05:29 AM
Perfluorononanesulfonic Acid (PFNS)	ND		5.0	ng/L	1	5/25/2022 05:29 AM
Perfluorononanoic Acid (PFNA)	ND		5.0	ng/L	1	5/25/2022 05:29 AM
Perfluorooctanesulfonamide (PFOSA)	ND		5.0	ng/L	1	5/25/2022 05:29 AM
Perfluorooctanesulfonic Acid (PFOS)	12		2.0	ng/L	1	5/25/2022 05:29 AM
Perfluorooctanoic Acid (PFOA)	68		2.0	ng/L	1	5/25/2022 05:29 AM
Perfluoropentanesulfonic Acid (PFPeS)	18		5.0	ng/L	1	5/25/2022 05:29 AM
Perfluoropentanoic Acid (PFPeA)	11		5.0	ng/L	1	5/25/2022 05:29 AM
Perfluorotetradecanoic Acid (PFTeA)	ND		5.0	ng/L	1	5/25/2022 05:29 AM
Perfluorotridecanoic Acid (PFTriA)	ND		5.0	ng/L	1	5/25/2022 05:29 AM
Perfluoroundecanoic Acid (PFUnA)	ND		5.0	ng/L	1	5/25/2022 05:29 AM
N-Ethylperfluorooctanesulfonamidoacetic Acid	ND		5.0	ng/L	1	5/25/2022 05:29 AM
N-Methylperfluorooctanesulfonamidoacetic Acid	ND		5.0	ng/L	1	5/25/2022 05:29 AM
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND		5.0	ng/L	1	5/25/2022 05:29 AM
4,8-Dioxa-3H-perfluorononanoic Acid (DONA)	ND		5.0	ng/L	1	5/25/2022 05:29 AM
11CI-Pf3OUdS	ND		5.0	ng/L	1	5/25/2022 05:29 AM
9CI-PF3ONS	ND		5.0	ng/L	1	5/25/2022 05:29 AM
Surr: 13C2-FtS 4:2	181	S	50-150	%REC	1	5/25/2022 05:29 AM
Surr: 13C2-FtS 6:2	138		50-150	%REC	1	5/25/2022 05:29 AM
Surr: 13C2-FtS 8:2	121		50-150	%REC	1	5/25/2022 05:29 AM
Surr: 13C2-PFDA	88.3		50-150	%REC	1	5/25/2022 05:29 AM
Surr: 13C2-PFDoA	81.5		50-150	%REC	1	5/25/2022 05:29 AM
Surr: 13C2-PFHxA	97.4		50-150	%REC	1	5/25/2022 05:29 AM
Surr: 13C2-PFTeA	98.1		50-150	%REC	1	5/25/2022 05:29 AM
Surr: 13C2-PFUnA	90.5		50-150	%REC	1	5/25/2022 05:29 AM
Surr: 13C3-HFPO-DA	96.1		50-150	%REC	1	5/25/2022 05:29 AM
Surr: 13C3-PFBS	85.7		50-150	%REC	1	5/25/2022 05:29 AM
Surr: 13C4-PFBA	95.3		50-150	%REC	1	5/25/2022 05:29 AM
Surr: 13C4-PFHpA	83.5		50-150	%REC	1	5/25/2022 05:29 AM
Surr: 13C4-PFOA	85.8		50-150	%REC	1	5/25/2022 05:29 AM
Surr: 13C4-PFOS	87.4		50-150	%REC	1	5/25/2022 05:29 AM
Surr: 13C5-PFNA	102		50-150	%REC	1	5/25/2022 05:29 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-106Lab ID: 22051511-06

Collection Date: 5/16/2022 02:10 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 13C5-PFPeA	92.2)	50-150	%REC	1	5/25/2022 05:29 AM
Surr: 13C8-FOSA	96.5	5	50-150	%REC	1	5/25/2022 05:29 AM
Surr: 1802-PFHxS	79.0)	50-150	%REC	1	5/25/2022 05:29 AM
Surr: d5-N-EtFOSAA	108	}	50-150	%REC	1	5/25/2022 05:29 AM
Surr: d3-N-MeFOSAA	95.8	}	50-150	%REC	1	5/25/2022 05:29 AM
SEMI-VOLATILE ORGANIC COMPOUNDS			SW846 8	270D	Prep: SW3510 5/20/22 14:40	Analyst: EE
1,1`-Biphenyl	ND	ı	19	μg/L	1	5/20/2022 09:25 PM
2,4,5-Trichlorophenol	ND	ı	19	μg/L	1	5/20/2022 09:25 PM
2,4,6-Trichlorophenol	ND)	19	μg/L	1	5/20/2022 09:25 PM
2,4-Dichlorophenol	ND)	19	μg/L	1	5/20/2022 09:25 PM
2,4-Dimethylphenol	ND)	19	μg/L	1	5/20/2022 09:25 PM
2,4-Dinitrophenol	ND)	19	μg/L	1	5/20/2022 09:25 PM
2,4-Dinitrotoluene	ND)	19	μg/L	1	5/20/2022 09:25 PM
2,6-Dinitrotoluene	ND)	19	μg/L	1	5/20/2022 09:25 PM
2-Chloronaphthalene	ND)	19	μg/L	1	5/20/2022 09:25 PM
2-Chlorophenol	ND)	19	μg/L	1	5/20/2022 09:25 PM
2-Methylnaphthalene	ND)	19	μg/L	1	5/20/2022 09:25 PM
2-Methylphenol	ND)	19	μg/L	1	5/20/2022 09:25 PM
2-Nitroaniline	ND)	19	μg/L	1	5/20/2022 09:25 PM
2-Nitrophenol	ND)	19	μg/L	1	5/20/2022 09:25 PM
3&4-Methylphenol	ND)	19	μg/L	1	5/20/2022 09:25 PM
3,3'-Dichlorobenzidine	ND)	19	μg/L	1	5/20/2022 09:25 PM
3-Nitroaniline	ND)	19	μg/L	1	5/20/2022 09:25 PM
4,6-Dinitro-2-methylphenol	ND)	19	μg/L	1	5/20/2022 09:25 PM
4-Bromophenyl phenyl ether	ND)	19	μg/L	1	5/20/2022 09:25 PM
4-Chloro-3-methylphenol	ND)	19	μg/L	1	5/20/2022 09:25 PM
4-Chloroaniline	ND)	19	μg/L	1	5/20/2022 09:25 PM
4-Chlorophenyl phenyl ether	ND)	19	μg/L	1	5/20/2022 09:25 PM
4-Nitroaniline	ND)	19	μg/L	1	5/20/2022 09:25 PM
4-Nitrophenol	ND)	19	μg/L	1	5/20/2022 09:25 PM
Acenaphthene	ND)	19	μg/L	1	5/20/2022 09:25 PM
Acenaphthylene	ND	ı	19	μg/L	1	5/20/2022 09:25 PM
Acetophenone	ND	ı	3.7	μg/L	1	5/20/2022 09:25 PM
Anthracene	ND	ı	19	μg/L	1	5/20/2022 09:25 PM
Atrazine	ND	ı	3.7	μg/L	1	5/20/2022 09:25 PM
Benzaldehyde	ND	ı	3.7	μg/L	1	5/20/2022 09:25 PM
Benzo(a)anthracene	ND	ı	19	μg/L	1	5/20/2022 09:25 PM
Benzo(a)pyrene	ND)	19	μg/L	1	5/20/2022 09:25 PM
Benzo(b)fluoranthene	ND)	19	μg/L	1	5/20/2022 09:25 PM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-106Lab ID: 22051511-06

Collection Date: 5/16/2022 02:10 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Benzo(g,h,i)perylene	ND		19	μg/L	1	5/20/2022 09:25 PM
Benzo(k)fluoranthene	ND		19	μg/L	1	5/20/2022 09:25 PM
Bis(2-chloroethoxy)methane	ND		19	μg/L	1	5/20/2022 09:25 PM
Bis(2-chloroethyl)ether	ND		19	μg/L	1	5/20/2022 09:25 PM
Bis(2-chloroisopropyl)ether	ND		19	μg/L	1	5/20/2022 09:25 PM
Bis(2-ethylhexyl)phthalate	ND		19	μg/L	1	5/20/2022 09:25 PM
Butyl benzyl phthalate	ND		19	μg/L	1	5/20/2022 09:25 PM
Caprolactam	ND		37	μg/L	1	5/20/2022 09:25 PM
Carbazole	ND		19	μg/L	1	5/20/2022 09:25 PM
Chrysene	ND		19	μg/L	1	5/20/2022 09:25 PM
Dibenzo(a,h)anthracene	ND		19	μg/L	1	5/20/2022 09:25 PM
Dibenzofuran	ND		19	μg/L	1	5/20/2022 09:25 PM
Diethyl phthalate	ND		19	μg/L	1	5/20/2022 09:25 PM
Dimethyl phthalate	ND		19	μg/L	1	5/20/2022 09:25 PM
Di-n-butyl phthalate	ND		19	μg/L	1	5/20/2022 09:25 PM
Di-n-octyl phthalate	ND		19	μg/L	1	5/20/2022 09:25 PM
Fluoranthene	ND		19	μg/L	1	5/20/2022 09:25 PM
Fluorene	ND		19	μg/L	1	5/20/2022 09:25 PM
Hexachlorobenzene	ND		19	μg/L	1	5/20/2022 09:25 PM
Hexachlorobutadiene	ND		19	μg/L	1	5/20/2022 09:25 PM
Hexachlorocyclopentadiene	ND		19	μg/L	1	5/20/2022 09:25 PM
Hexachloroethane	ND		19	μg/L	1	5/20/2022 09:25 PM
Indeno(1,2,3-cd)pyrene	ND		19	μg/L	1	5/20/2022 09:25 PM
Isophorone	ND		19	μg/L	1	5/20/2022 09:25 PM
Naphthalene	ND		19	μg/L	1	5/20/2022 09:25 PM
Nitrobenzene	ND		19	μg/L	1	5/20/2022 09:25 PM
N-Nitrosodi-n-propylamine	ND		19	μg/L	1	5/20/2022 09:25 PM
N-Nitrosodiphenylamine	ND		19	μg/L	1	5/20/2022 09:25 PM
Pentachlorophenol	ND		19	μg/L	1	5/20/2022 09:25 PM
Phenanthrene	ND		19	μg/L	1	5/20/2022 09:25 PM
Phenol	ND		19	μg/L	1	5/20/2022 09:25 PM
Pyrene	ND		19	μg/L	1	5/20/2022 09:25 PM
Surr: 2,4,6-Tribromophenol	68.1		27-83	%REC	1	5/20/2022 09:25 PM
Surr: 2-Fluorobiphenyl	63.4		26-79	%REC	1	5/20/2022 09:25 PM
Surr: 2-Fluorophenol	42.2		13-56	%REC	1	5/20/2022 09:25 PM
Surr: 4-Terphenyl-d14	83.0		43-106	%REC	1	5/20/2022 09:25 PM
Surr: Nitrobenzene-d5	63.2		29-80	%REC	1	5/20/2022 09:25 PM
Surr: Phenol-d6	27.8		10-35	%REC	1	5/20/2022 09:25 PM
VOL 450 5 000 4100 001100			01110000	_		

VOLATILE ORGANIC COMPOUNDS SW8260C Analyst: MF

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-106Lab ID: 22051511-06

Collection Date: 5/16/2022 02:10 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result Qu	Report ual Limit	Units	Dilution Factor	Date Analyzed
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/20/2022 01:38 AM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	5/20/2022 01:38 AM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/20/2022 01:38 AM
1,1,2-Trichlorotrifluoroethane	ND	1.0	μg/L	1	5/20/2022 01:38 AM
1,1-Dichloroethane	ND	1.0	μg/L	1	5/20/2022 01:38 AM
1,1-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 01:38 AM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/20/2022 01:38 AM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	5/20/2022 01:38 AM
1,2-Dibromoethane	ND	1.0	μg/L	1	5/20/2022 01:38 AM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 01:38 AM
1,2-Dichloroethane	ND	1.0	μg/L	1	5/20/2022 01:38 AM
1,2-Dichloropropane	ND	1.0	μg/L	1	5/20/2022 01:38 AM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 01:38 AM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 01:38 AM
2-Butanone	ND	5.0	μg/L	1	5/20/2022 01:38 AM
2-Hexanone	ND	5.0	μg/L	1	5/20/2022 01:38 AM
4-Methyl-2-pentanone	ND	1.0	μg/L	1	5/20/2022 01:38 AM
Acetone	ND	10	μg/L	1	5/20/2022 01:38 AM
Benzene	ND	1.0	μg/L	1	5/20/2022 01:38 AM
Bromodichloromethane	ND	1.0	μg/L	1	5/20/2022 01:38 AM
Bromoform	ND	1.0	μg/L	1	5/20/2022 01:38 AM
Bromomethane	ND	1.0	μg/L	1	5/20/2022 01:38 AM
Carbon disulfide	ND	1.0	μg/L	1	5/20/2022 01:38 AM
Carbon tetrachloride	ND	1.0	μg/L	1	5/20/2022 01:38 AM
Chlorobenzene	ND	1.0	μg/L	1	5/20/2022 01:38 AM
Chloroethane	ND	1.0	μg/L	1	5/20/2022 01:38 AM
Chloroform	ND	1.0	μg/L	1	5/20/2022 01:38 AM
Chloromethane	ND	1.0	μg/L	1	5/20/2022 01:38 AM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 01:38 AM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/20/2022 01:38 AM
Cyclohexane	ND	2.0	μg/L	1	5/20/2022 01:38 AM
Dibromochloromethane	ND	1.0	μg/L	1	5/20/2022 01:38 AM
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/20/2022 01:38 AM
Ethylbenzene	ND	1.0	μg/L	1	5/20/2022 01:38 AM
Isopropylbenzene	ND	1.0	μg/L	1	5/20/2022 01:38 AM
Methyl acetate	ND	2.0	μg/L	1	5/20/2022 01:38 AM
Methyl tert-butyl ether	ND	1.0	μg/L	1	5/20/2022 01:38 AM
Methylcyclohexane	ND	1.0	μg/L	1	5/20/2022 01:38 AM
Methylene chloride	ND	5.0	μg/L	1	5/20/2022 01:38 AM
Styrene	ND	1.0	μg/L μg/L	1	5/20/2022 01:38 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-106Lab ID: 22051511-06

Collection Date: 5/16/2022 02:10 PM Matrix: GROUNDWATER

Analyses	Result	Report Qual Limit	Units	Dilution Factor	Date Analyzed
Tetrachloroethene	ND	1.0	μg/L	1	5/20/2022 01:38 AM
Toluene	ND	1.0	μg/L	1	5/20/2022 01:38 AM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 01:38 AM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/20/2022 01:38 AM
Trichloroethene	ND	1.0	μg/L	1	5/20/2022 01:38 AM
Trichlorofluoromethane	ND	1.0	μg/L	1	5/20/2022 01:38 AM
Vinyl chloride	ND	1.0	μg/L	1	5/20/2022 01:38 AM
Xylenes, Total	ND	3.0	μg/L	1	5/20/2022 01:38 AM
Surr: 1,2-Dichloroethane-d4	95.1	75-120	%REC	1	5/20/2022 01:38 AM
Surr: 4-Bromofluorobenzene	90.6	80-110	%REC	1	5/20/2022 01:38 AM
Surr: Dibromofluoromethane	100	85-115	%REC	1	5/20/2022 01:38 AM
Surr: Toluene-d8	100	85-110	%REC	1	5/20/2022 01:38 AM

Date: 01-Jun-2022

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-200Lab ID: 22051511-07

Collection Date: 5/16/2022 03:55 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
PCBS			SW8082	4	Prep: SW3511 5/20/22 16:59	Analyst: RM
Aroclor 1016	ND		0.20	μg/L	1	5/21/2022 06:43 AM
Aroclor 1221	ND		0.20	μg/L	1	5/21/2022 06:43 AM
Aroclor 1232	ND		0.20	μg/L	1	5/21/2022 06:43 AM
Aroclor 1242	ND		0.20	μg/L	1	5/21/2022 06:43 AM
Aroclor 1248	ND		0.20	μg/L	1	5/21/2022 06:43 AM
Aroclor 1254	ND		0.20	μg/L	1	5/21/2022 06:43 AM
Aroclor 1260	ND		0.20	μg/L	1	5/21/2022 06:43 AM
Aroclor 1262	ND		0.20	μg/L	1	5/21/2022 06:43 AM
Aroclor 1268	ND		0.20	μg/L	1	5/21/2022 06:43 AM
PCBs, Total	ND		0.20	μg/L	1	5/21/2022 06:43 AM
Surr: Decachlorobiphenyl	93.1		42-153	%REC	1	5/21/2022 06:43 AM
Surr: Tetrachloro-m-xylene	90.1		48-127	%REC	1	5/21/2022 06:43 AM
MERCURY BY CVAA (DISSOLVED)			SW7470	4	Prep: SW7470 5/19/22 11:03	Analyst: EJC
Mercury	ND		0.00020	mg/L	1	5/19/2022 12:40 PM
METALS BY ICP-MS (DISSOLVED)			SW6020E	3	Prep: SW3015A 5/23/22 17:14	Analyst: STP
Aluminum	0.032		0.010	mg/L	1	5/23/2022 07:27 PM
Antimony	ND		0.0050	mg/L	1	5/23/2022 07:27 PM
Arsenic	0.0096		0.0050	mg/L	1	5/23/2022 07:27 PM
Barium	0.30		0.0050	mg/L	1	5/23/2022 07:27 PM
Beryllium	ND		0.0020	mg/L	1	5/23/2022 07:27 PM
Boron	0.11		0.020	mg/L	1	5/23/2022 07:27 PM
Cadmium	ND		0.0020	mg/L	1	5/23/2022 07:27 PM
Chromium	ND		0.0050	mg/L	1	5/23/2022 07:27 PM
Copper	ND		0.0050	mg/L	1	5/23/2022 07:27 PM
Lead	ND		0.0050	mg/L	1	5/23/2022 07:27 PM
Nickel	ND		0.0050	mg/L	1	5/23/2022 07:27 PM
Selenium	ND		0.0050	mg/L	1	5/23/2022 07:27 PM
Silver	ND		0.0050	mg/L	1	5/23/2022 07:27 PM
Thallium	ND		0.0050	mg/L	1	5/23/2022 07:27 PM
Zinc	ND		0.010	mg/L	1	5/25/2022 05:00 PM
PFAS BY EPA 537 MODIFIED			E537 MO	D	Prep: E537 Mod 5/20/22 18:04	Analyst: ENS
Fluorotelomer Sulphonic Acid 4:2 (FtS 4:2)	ND		4.6	ng/L	1	5/25/2022 05:37 AM
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	ND		4.6	ng/L	1	5/25/2022 05:37 AM
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	ND		4.6	ng/L	1	5/25/2022 05:37 AM
Perfluorobutanesulfonic Acid (PFBS)	6.1		4.6	ng/L	1	5/25/2022 05:37 AM
Perfluorobutanoic Acid (PFBA)	9.0		4.6	ng/L	1	5/25/2022 05:37 AM
Perfluorodecanesulfonic Acid (PFDS)	ND		4.6	ng/L	1	5/25/2022 05:37 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-200Lab ID: 22051511-07

Collection Date: 5/16/2022 03:55 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Perfluorodecanoic Acid (PFDA)	ND		4.6	ng/L	1	5/25/2022 05:37 AM
Perfluorododecanoic Acid (PFDoA)	ND		4.6	ng/L	1	5/25/2022 05:37 AM
Perfluoroheptanesulfonic Acid (PFHpS)	ND		4.6	ng/L	1	5/25/2022 05:37 AM
Perfluoroheptanoic Acid (PFHpA)	5.0		4.6	ng/L	1	5/25/2022 05:37 AM
Perfluorohexanesulfonic Acid (PFHxS)	15		4.6	ng/L	1	5/25/2022 05:37 AM
Perfluorohexanoic Acid (PFHxA)	ND		4.6	ng/L	1	5/25/2022 05:37 AM
Perfluorononanesulfonic Acid (PFNS)	ND		4.6	ng/L	1	5/25/2022 05:37 AM
Perfluorononanoic Acid (PFNA)	ND		4.6	ng/L	1	5/25/2022 05:37 AM
Perfluorooctanesulfonamide (PFOSA)	ND		4.6	ng/L	1	5/25/2022 05:37 AM
Perfluorooctanesulfonic Acid (PFOS)	3.2		1.9	ng/L	1	5/25/2022 05:37 AM
Perfluorooctanoic Acid (PFOA)	16		1.9	ng/L	1	5/25/2022 05:37 AM
Perfluoropentanesulfonic Acid (PFPeS)	ND		4.6	ng/L	1	5/25/2022 05:37 AM
Perfluoropentanoic Acid (PFPeA)	ND		4.6	ng/L	1	5/25/2022 05:37 AM
Perfluorotetradecanoic Acid (PFTeA)	ND		4.6	ng/L	1	5/25/2022 05:37 AM
Perfluorotridecanoic Acid (PFTriA)	ND		4.6	ng/L	1	5/25/2022 05:37 AM
Perfluoroundecanoic Acid (PFUnA)	ND		4.6	ng/L	1	5/25/2022 05:37 AM
N-Ethylperfluorooctanesulfonamidoacetic Acid	ND		4.6	ng/L	1	5/25/2022 05:37 AM
N-Methylperfluorooctanesulfonamidoacetic Acid	ND		4.6	ng/L	1	5/25/2022 05:37 AM
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND		4.6	ng/L	1	5/25/2022 05:37 AM
4,8-Dioxa-3H-perfluorononanoic Acid (DONA)	ND		4.6	ng/L	1	5/25/2022 05:37 AM
11CI-Pf3OUdS	ND		4.6	ng/L	1	5/25/2022 05:37 AM
9CI-PF3ONS	ND		4.6	ng/L	1	5/25/2022 05:37 AM
Surr: 13C2-FtS 4:2	99.2		50-150	%REC	1	5/25/2022 05:37 AM
Surr: 13C2-FtS 6:2	109		50-150	%REC	1	5/25/2022 05:37 AM
Surr: 13C2-FtS 8:2	125		50-150	%REC	1	5/25/2022 05:37 AM
Surr: 13C2-PFDA	85.6		50-150	%REC	1	5/25/2022 05:37 AM
Surr: 13C2-PFDoA	73.5		50-150	%REC	1	5/25/2022 05:37 AM
Surr: 13C2-PFHxA	95.3		50-150	%REC	1	5/25/2022 05:37 AM
Surr: 13C2-PFTeA	88.7		50-150	%REC	1	5/25/2022 05:37 AM
Surr: 13C2-PFUnA	80.6		50-150	%REC	1	5/25/2022 05:37 AM
Surr: 13C3-HFPO-DA	95.1		50-150	%REC	1	5/25/2022 05:37 AM
Surr: 13C3-PFBS	84.5		50-150	%REC	1	5/25/2022 05:37 AM
Surr: 13C4-PFBA	92.3		50-150	%REC	1	5/25/2022 05:37 AM
Surr: 13C4-PFHpA	78.6		50-150	%REC	1	5/25/2022 05:37 AM
Surr: 13C4-PFOA	82.1		50-150	%REC	1	5/25/2022 05:37 AM
Surr: 13C4-PFOS	86.3		50-150	%REC	1	5/25/2022 05:37 AM
Surr: 13C5-PFNA	94.9		50-150	%REC	1	5/25/2022 05:37 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-200Lab ID: 22051511-07

Collection Date: 5/16/2022 03:55 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 13C5-PFPeA	86.5		50-150	%REC	1	5/25/2022 05:37 AM
Surr: 13C8-FOSA	76.6		50-150	%REC	1	5/25/2022 05:37 AM
Surr: 1802-PFHxS	81.2		50-150	%REC	1	5/25/2022 05:37 AM
Surr: d5-N-EtFOSAA	99.8		50-150	%REC	1	5/25/2022 05:37 AM
Surr: d3-N-MeFOSAA	87.6		50-150	%REC	1	5/25/2022 05:37 AM
SEMI-VOLATILE ORGANIC COMPOUNDS			SW846 8	270D	Prep: SW3510 5/20/22 14:40	Analyst: EE
1,1`-Biphenyl	ND		20	μg/L	1	5/20/2022 09:45 PM
2,4,5-Trichlorophenol	ND		20	μg/L	1	5/20/2022 09:45 PM
2,4,6-Trichlorophenol	ND		20	μg/L	1	5/20/2022 09:45 PM
2,4-Dichlorophenol	ND		20	μg/L	1	5/20/2022 09:45 PM
2,4-Dimethylphenol	ND		20	μg/L	1	5/20/2022 09:45 PM
2,4-Dinitrophenol	ND		20	μg/L	1	5/20/2022 09:45 PM
2,4-Dinitrotoluene	ND		20	μg/L	1	5/20/2022 09:45 PM
2,6-Dinitrotoluene	ND		20	μg/L	1	5/20/2022 09:45 PM
2-Chloronaphthalene	ND		20	μg/L	1	5/20/2022 09:45 PM
2-Chlorophenol	ND		20	μg/L	1	5/20/2022 09:45 PM
2-Methylnaphthalene	ND		20	μg/L	1	5/20/2022 09:45 PM
2-Methylphenol	ND		20	μg/L	1	5/20/2022 09:45 PM
2-Nitroaniline	ND		20	μg/L	1	5/20/2022 09:45 PM
2-Nitrophenol	ND		20	μg/L	1	5/20/2022 09:45 PM
3&4-Methylphenol	ND		20	μg/L	1	5/20/2022 09:45 PM
3,3'-Dichlorobenzidine	ND		20	μg/L	1	5/20/2022 09:45 PM
3-Nitroaniline	ND		20	μg/L	1	5/20/2022 09:45 PM
4,6-Dinitro-2-methylphenol	ND		20	μg/L	1	5/20/2022 09:45 PM
4-Bromophenyl phenyl ether	ND		20	μg/L	1	5/20/2022 09:45 PM
4-Chloro-3-methylphenol	ND		20	μg/L	1	5/20/2022 09:45 PM
4-Chloroaniline	ND		20	μg/L	1	5/20/2022 09:45 PM
4-Chlorophenyl phenyl ether	ND		20	μg/L	1	5/20/2022 09:45 PM
4-Nitroaniline	ND		20	μg/L	1	5/20/2022 09:45 PM
4-Nitrophenol	ND		20	μg/L	1	5/20/2022 09:45 PM
Acenaphthene	ND		20	μg/L	1	5/20/2022 09:45 PM
Acenaphthylene	ND		20	μg/L	1	5/20/2022 09:45 PM
Acetophenone	ND		3.9	μg/L	1	5/20/2022 09:45 PM
Anthracene	ND		20	μg/L	1	5/20/2022 09:45 PM
Atrazine	ND		3.9	μg/L	1	5/20/2022 09:45 PM
Benzaldehyde	ND		3.9	μg/L	1	5/20/2022 09:45 PM
Benzo(a)anthracene	ND		20	μg/L	1	5/20/2022 09:45 PM
Benzo(a)pyrene	ND		20	μg/L	1	5/20/2022 09:45 PM
Benzo(b)fluoranthene	ND		20	μg/L	1	5/20/2022 09:45 PM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-200Lab ID: 22051511-07

Collection Date: 5/16/2022 03:55 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Benzo(g,h,i)perylene	ND		20	μg/L	1	5/20/2022 09:45 PM
Benzo(k)fluoranthene	ND		20	μg/L	1	5/20/2022 09:45 PM
Bis(2-chloroethoxy)methane	ND		20	μg/L	1	5/20/2022 09:45 PM
Bis(2-chloroethyl)ether	ND		20	μg/L	1	5/20/2022 09:45 PM
Bis(2-chloroisopropyl)ether	ND		20	μg/L	1	5/20/2022 09:45 PM
Bis(2-ethylhexyl)phthalate	ND		20	μg/L	1	5/20/2022 09:45 PM
Butyl benzyl phthalate	ND		20	μg/L	1	5/20/2022 09:45 PM
Caprolactam	ND		39	μg/L	1	5/20/2022 09:45 PM
Carbazole	ND		20	μg/L	1	5/20/2022 09:45 PM
Chrysene	ND		20	μg/L	1	5/20/2022 09:45 PM
Dibenzo(a,h)anthracene	ND		20	μg/L	1	5/20/2022 09:45 PM
Dibenzofuran	ND		20	μg/L	1	5/20/2022 09:45 PM
Diethyl phthalate	ND		20	μg/L	1	5/20/2022 09:45 PM
Dimethyl phthalate	ND		20	μg/L	1	5/20/2022 09:45 PM
Di-n-butyl phthalate	ND		20	μg/L	1	5/20/2022 09:45 PM
Di-n-octyl phthalate	ND		20	μg/L	1	5/20/2022 09:45 PM
Fluoranthene	ND		20	μg/L	1	5/20/2022 09:45 PM
Fluorene	ND		20	μg/L	1	5/20/2022 09:45 PM
Hexachlorobenzene	ND		20	μg/L	1	5/20/2022 09:45 PM
Hexachlorobutadiene	ND		20	μg/L	1	5/20/2022 09:45 PM
Hexachlorocyclopentadiene	ND		20	μg/L	1	5/20/2022 09:45 PM
Hexachloroethane	ND		20	μg/L	1	5/20/2022 09:45 PM
Indeno(1,2,3-cd)pyrene	ND		20	μg/L	1	5/20/2022 09:45 PM
Isophorone	ND		20	μg/L	1	5/20/2022 09:45 PM
Naphthalene	ND		20	μg/L	1	5/20/2022 09:45 PM
Nitrobenzene	ND		20	μg/L	1	5/20/2022 09:45 PM
N-Nitrosodi-n-propylamine	ND		20	μg/L	1	5/20/2022 09:45 PM
N-Nitrosodiphenylamine	ND		20	μg/L	1	5/20/2022 09:45 PM
Pentachlorophenol	ND		20	μg/L	1	5/20/2022 09:45 PM
Phenanthrene	ND		20	μg/L	1	5/20/2022 09:45 PM
Phenol	ND		20	μg/L	1	5/20/2022 09:45 PM
Pyrene	ND		20	μg/L	1	5/20/2022 09:45 PM
Surr: 2,4,6-Tribromophenol	62.8	!	27-83	%REC	1	5/20/2022 09:45 PM
Surr: 2-Fluorobiphenyl	61.1		26-79	%REC	1	5/20/2022 09:45 PM
Surr: 2-Fluorophenol	43.7	•	13-56	%REC	1	5/20/2022 09:45 PM
Surr: 4-Terphenyl-d14	71.8	!	43-106	%REC	1	5/20/2022 09:45 PM
Surr: Nitrobenzene-d5	61.4	!	29-80	%REC	1	5/20/2022 09:45 PM
Surr: Phenol-d6	28.7	•	10-35	%REC	1	5/20/2022 09:45 PM
VOL 4711 7 000 41110 001400111100			01110000	_		

VOLATILE ORGANIC COMPOUNDS SW8260C Analyst: MF

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-200Lab ID: 22051511-07

Collection Date: 5/16/2022 03:55 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Report Qual Limit	Units	Dilution Factor	Date Analyzed
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/20/2022 01:56 AM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	5/20/2022 01:56 AM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/20/2022 01:56 AM
1,1,2-Trichlorotrifluoroethane	ND	1.0	μg/L	1	5/20/2022 01:56 AM
1,1-Dichloroethane	ND	1.0	μg/L	1	5/20/2022 01:56 AM
1,1-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 01:56 AM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/20/2022 01:56 AM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	5/20/2022 01:56 AM
1,2-Dibromoethane	ND	1.0	μg/L	1	5/20/2022 01:56 AM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 01:56 AM
1,2-Dichloroethane	ND	1.0	μg/L	1	5/20/2022 01:56 AM
1,2-Dichloropropane	ND	1.0	μg/L	1	5/20/2022 01:56 AM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 01:56 AM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 01:56 AM
2-Butanone	ND	5.0	μg/L	1	5/20/2022 01:56 AM
2-Hexanone	ND	5.0	μg/L	1	5/20/2022 01:56 AM
4-Methyl-2-pentanone	ND	1.0	μg/L	1	5/20/2022 01:56 AM
Acetone	ND	10	μg/L	1	5/20/2022 01:56 AM
Benzene	ND	1.0	μg/L	1	5/20/2022 01:56 AM
Bromodichloromethane	ND	1.0	μg/L	1	5/20/2022 01:56 AM
Bromoform	ND	1.0	μg/L	1	5/20/2022 01:56 AM
Bromomethane	ND	1.0	μg/L	1	5/20/2022 01:56 AM
Carbon disulfide	ND	1.0	μg/L	1	5/20/2022 01:56 AM
Carbon tetrachloride	ND	1.0	μg/L	1	5/20/2022 01:56 AM
Chlorobenzene	ND	1.0	μg/L	1	5/20/2022 01:56 AM
Chloroethane	ND	1.0	μg/L	1	5/20/2022 01:56 AM
Chloroform	ND	1.0	μg/L	1	5/20/2022 01:56 AM
Chloromethane	ND	1.0	μg/L	1	5/20/2022 01:56 AM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 01:56 AM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/20/2022 01:56 AM
Cyclohexane	ND	2.0	μg/L	1	5/20/2022 01:56 AM
Dibromochloromethane	ND	1.0	μg/L	1	5/20/2022 01:56 AM
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/20/2022 01:56 AM
Ethylbenzene	ND	1.0	μg/L	1	5/20/2022 01:56 AM
Isopropylbenzene	ND	1.0		1	5/20/2022 01:56 AM
Methyl acetate	ND	2.0	μg/L	1	5/20/2022 01:56 AM
Methyl tert-butyl ether	ND	1.0	μg/L	1	5/20/2022 01:56 AM
Methylcyclohexane	ND	1.0	μg/L	1	5/20/2022 01:56 AM
Methylene chloride	ND	5.0	μg/L	1	5/20/2022 01:56 AM
Styrene	ND	1.0	μg/L	1	5/20/2022 01:56 AM

Client: The Mannik & Smith Group, Inc.

Project: Former Mount Pleasant Landfill **Work Order:** 22051511

Sample ID: MW-200 **Lab ID:** 22051511-07

Collection Date: 5/16/2022 03:55 PM Matrix: GROUNDWATER

Analyses	Result Qu	Report ial Limit	Units	Dilution Factor	Date Analyzed
Tetrachloroethene	ND	1.0	μg/L	1	5/20/2022 01:56 AM
Toluene	ND	1.0	μg/L	1	5/20/2022 01:56 AM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 01:56 AM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/20/2022 01:56 AM
Trichloroethene	ND	1.0	μg/L	1	5/20/2022 01:56 AM
Trichlorofluoromethane	ND	1.0	μg/L	1	5/20/2022 01:56 AM
Vinyl chloride	ND	1.0	μg/L	1	5/20/2022 01:56 AM
Xylenes, Total	ND	3.0	μg/L	1	5/20/2022 01:56 AM
Surr: 1,2-Dichloroethane-d4	100	75-120	%REC	1	5/20/2022 01:56 AM
Surr: 4-Bromofluorobenzene	88.8	80-110	%REC	1	5/20/2022 01:56 AM
Surr: Dibromofluoromethane	104	85-115	%REC	1	5/20/2022 01:56 AM
Surr: Toluene-d8	97.2	85-110	%REC	1	5/20/2022 01:56 AM

Date: 01-Jun-2022

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-201Lab ID: 22051511-08

Collection Date: 5/16/2022 04:45 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
PCBS			SW8082	4	Prep: SW3511 5/20/22 16:59	Analyst: RM
Aroclor 1016	ND		0.20	μg/L	1	5/21/2022 06:56 AM
Aroclor 1221	ND		0.20	μg/L	1	5/21/2022 06:56 AM
Aroclor 1232	ND		0.20	μg/L	1	5/21/2022 06:56 AM
Aroclor 1242	ND		0.20	μg/L	1	5/21/2022 06:56 AM
Aroclor 1248	ND		0.20	μg/L	1	5/21/2022 06:56 AM
Aroclor 1254	ND		0.20	μg/L	1	5/21/2022 06:56 AM
Aroclor 1260	ND		0.20	μg/L	1	5/21/2022 06:56 AM
Aroclor 1262	ND		0.20	μg/L	1	5/21/2022 06:56 AM
Aroclor 1268	ND		0.20	μg/L	1	5/21/2022 06:56 AM
PCBs, Total	ND		0.20	μg/L	1	5/21/2022 06:56 AM
Surr: Decachlorobiphenyl	112		42-153	%REC	1	5/21/2022 06:56 AM
Surr: Tetrachloro-m-xylene	96.4		48-127	%REC	1	5/21/2022 06:56 AM
MERCURY BY CVAA (DISSOLVED)			SW7470	A	Prep: SW7470 5/19/22 11:03	Analyst: EJC
Mercury	ND		0.00020	mg/L	1	5/19/2022 12:42 PM
METALS BY ICP-MS (DISSOLVED)			SW6020E	3	Prep: SW3015A 5/23/22 17:14	Analyst: STP
Aluminum	ND		0.010	mg/L	1	5/23/2022 07:28 PM
Antimony	ND		0.0050	mg/L	1	5/23/2022 07:28 PM
Arsenic	ND		0.0050	mg/L	1	5/23/2022 07:28 PM
Barium	0.12		0.0050	mg/L	1	5/23/2022 07:28 PM
Beryllium	ND		0.0020	mg/L	1	5/23/2022 07:28 PM
Boron	0.088		0.020	mg/L	1	5/23/2022 07:28 PM
Cadmium	ND		0.0020	mg/L	1	5/23/2022 07:28 PM
Chromium	ND		0.0050	mg/L	1	5/23/2022 07:28 PM
Copper	ND		0.0050	mg/L	1	5/23/2022 07:28 PM
Lead	ND		0.0050	mg/L	1	5/23/2022 07:28 PM
Nickel	ND		0.0050	mg/L	1	5/23/2022 07:28 PM
Selenium	ND		0.0050	mg/L	1	5/23/2022 07:28 PM
Silver	ND		0.0050	mg/L	1	5/23/2022 07:28 PM
Thallium	ND		0.0050	mg/L	1	5/23/2022 07:28 PM
Zinc	ND		0.010	mg/L	1	5/23/2022 07:28 PM
PFAS BY EPA 537 MODIFIED			E537 MO	D	Prep: E537 Mod 5/23/22 17:15	Analyst: ENS
Fluorotelomer Sulphonic Acid 4:2 (FtS 4:2)	ND		4.9	ng/L	1	5/25/2022 08:15 AM
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	ND		4.9	ng/L	1	5/25/2022 08:15 AM
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	ND		4.9	ng/L	1	5/25/2022 08:15 AM
Perfluorobutanesulfonic Acid (PFBS)	17		4.9	ng/L	1	5/25/2022 08:15 AM
Perfluorobutanoic Acid (PFBA)	10		4.9	ng/L	1	5/25/2022 08:15 AM
Perfluorodecanesulfonic Acid (PFDS)	ND		4.9		1	5/25/2022 08:15 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-201Lab ID: 22051511-08

Collection Date: 5/16/2022 04:45 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Perfluorodecanoic Acid (PFDA)	NE)	4.9	ng/L	1	5/25/2022 08:15 AM
Perfluorododecanoic Acid (PFDoA)	NE)	4.9	ng/L	1	5/25/2022 08:15 AM
Perfluoroheptanesulfonic Acid (PFHpS)	NE)	4.9	ng/L	1	5/25/2022 08:15 AM
Perfluoroheptanoic Acid (PFHpA)	7.4	4	4.9	ng/L	1	5/25/2022 08:15 AM
Perfluorohexanesulfonic Acid (PFHxS)	19	9	4.9	ng/L	1	5/25/2022 08:15 AM
Perfluorohexanoic Acid (PFHxA)	5.4	4	4.9	ng/L	1	5/25/2022 08:15 AM
Perfluorononanesulfonic Acid (PFNS)	NE)	4.9	ng/L	1	5/25/2022 08:15 AM
Perfluorononanoic Acid (PFNA)	NE)	4.9	ng/L	1	5/25/2022 08:15 AM
Perfluorooctanesulfonamide (PFOSA)	NE)	4.9	ng/L	1	5/25/2022 08:15 AM
Perfluorooctanesulfonic Acid (PFOS)	NE)	2.0	ng/L	1	5/25/2022 08:15 AM
Perfluorooctanoic Acid (PFOA)	2	5	2.0	ng/L	1	5/25/2022 08:15 AM
Perfluoropentanesulfonic Acid (PFPeS)	5.8	В	4.9	ng/L	1	5/25/2022 08:15 AM
Perfluoropentanoic Acid (PFPeA)	NE)	4.9	ng/L	1	5/25/2022 08:15 AM
Perfluorotetradecanoic Acid (PFTeA)	NE)	4.9	ng/L	1	5/25/2022 08:15 AM
Perfluorotridecanoic Acid (PFTriA)	NE)	4.9	ng/L	1	5/25/2022 08:15 AM
Perfluoroundecanoic Acid (PFUnA)	NE)	4.9	ng/L	1	5/25/2022 08:15 AM
N-Ethylperfluorooctanesulfonamidoacetic Acid	NE)	4.9	ng/L	1	5/25/2022 08:15 AM
N-Methylperfluorooctanesulfonamidoacetic Acid	NE)	4.9	ng/L	1	5/25/2022 08:15 AM
Hexafluoropropylene oxide dimer acid (HFPO-DA)	NE)	4.9	ng/L	1	5/25/2022 08:15 AM
4,8-Dioxa-3H-perfluorononanoic Acid (DONA)	NE)	4.9	ng/L	1	5/25/2022 08:15 AM
11CI-Pf3OUdS	NE)	4.9	ng/L	1	5/25/2022 08:15 AM
9CI-PF3ONS	NE)	4.9	ng/L	1	5/25/2022 08:15 AM
Surr: 13C2-FtS 4:2	91.	9	50-150	%REC	1	5/25/2022 08:15 AM
Surr: 13C2-FtS 6:2	83.2	2	50-150	%REC	1	5/25/2022 08:15 AM
Surr: 13C2-FtS 8:2	70.0	6	50-150	%REC	1	5/25/2022 08:15 AM
Surr: 13C2-PFDA	61.0	0	50-150	%REC	1	5/25/2022 08:15 AM
Surr: 13C2-PFDoA	55.0	6	50-150	%REC	1	5/25/2022 08:15 AM
Surr: 13C2-PFHxA	68.	5	50-150	%REC	1	5/25/2022 08:15 AM
Surr: 13C2-PFTeA	73.8	8	50-150	%REC	1	5/25/2022 08:15 AM
Surr: 13C2-PFUnA	87.0	0	50-150	%REC	1	5/25/2022 08:15 AM
Surr: 13C3-HFPO-DA	71.	3	50-150	%REC	1	5/25/2022 08:15 AM
Surr: 13C3-PFBS	93.	8	50-150	%REC	1	5/25/2022 08:15 AM
Surr: 13C4-PFBA	91.	1	50-150	%REC	1	5/25/2022 08:15 AM
Surr: 13C4-PFHpA	10	5	50-150	%REC	1	5/25/2022 08:15 AM
Surr: 13C4-PFOA	94.0	0	50-150	%REC	1	5/25/2022 08:15 AM
Surr: 13C4-PFOS	75.0	6	50-150	%REC	1	5/25/2022 08:15 AM
Surr: 13C5-PFNA	86.4	4	50-150	%REC	1	5/25/2022 08:15 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-201Lab ID: 22051511-08

Collection Date: 5/16/2022 04:45 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 13C5-PFPeA	83.3		50-150	%REC	1	5/25/2022 08:15 AM
Surr: 13C8-FOSA	80.6		50-150	%REC	1	5/25/2022 08:15 AM
Surr: 1802-PFHxS	93.5		50-150	%REC	1	5/25/2022 08:15 AM
Surr: d5-N-EtFOSAA	81.1		50-150	%REC	1	5/25/2022 08:15 AM
Surr: d3-N-MeFOSAA	47.2	S	50-150	%REC	1	5/25/2022 08:15 AM
SEMI-VOLATILE ORGANIC COMPOUNDS			SW846 8	270D	Prep: SW3510 5/20/22 14:40	Analyst: EE
1,1`-Biphenyl	ND		19	μg/L	1	5/20/2022 10:06 PM
2,4,5-Trichlorophenol	ND		19	μg/L	1	5/20/2022 10:06 PM
2,4,6-Trichlorophenol	ND		19	μg/L	1	5/20/2022 10:06 PM
2,4-Dichlorophenol	ND		19	μg/L	1	5/20/2022 10:06 PM
2,4-Dimethylphenol	ND		19	μg/L	1	5/20/2022 10:06 PM
2,4-Dinitrophenol	ND		19	μg/L	1	5/20/2022 10:06 PM
2,4-Dinitrotoluene	ND		19	μg/L	1	5/20/2022 10:06 PM
2,6-Dinitrotoluene	ND		19	μg/L	1	5/20/2022 10:06 PM
2-Chloronaphthalene	ND		19	μg/L	1	5/20/2022 10:06 PM
2-Chlorophenol	ND		19	μg/L	1	5/20/2022 10:06 PM
2-Methylnaphthalene	ND		19	μg/L	1	5/20/2022 10:06 PM
2-Methylphenol	ND		19	μg/L	1	5/20/2022 10:06 PM
2-Nitroaniline	ND		19	μg/L	1	5/20/2022 10:06 PM
2-Nitrophenol	ND		19	μg/L	1	5/20/2022 10:06 PM
3&4-Methylphenol	ND		19	μg/L	1	5/20/2022 10:06 PM
3,3'-Dichlorobenzidine	ND		19	μg/L	1	5/20/2022 10:06 PM
3-Nitroaniline	ND		19	μg/L	1	5/20/2022 10:06 PM
4,6-Dinitro-2-methylphenol	ND		19	μg/L	1	5/20/2022 10:06 PM
4-Bromophenyl phenyl ether	ND		19	μg/L	1	5/20/2022 10:06 PM
4-Chloro-3-methylphenol	ND		19	μg/L	1	5/20/2022 10:06 PM
4-Chloroaniline	ND		19	μg/L	1	5/20/2022 10:06 PM
4-Chlorophenyl phenyl ether	ND		19	μg/L	1	5/20/2022 10:06 PM
4-Nitroaniline	ND		19	μg/L	1	5/20/2022 10:06 PM
4-Nitrophenol	ND		19	μg/L	1	5/20/2022 10:06 PM
Acenaphthene	ND		19	μg/L	1	5/20/2022 10:06 PM
Acenaphthylene	ND		19	μg/L	1	5/20/2022 10:06 PM
Acetophenone	ND		3.8	μg/L	1	5/20/2022 10:06 PM
Anthracene	ND		19	μg/L	1	5/20/2022 10:06 PM
Atrazine	ND		3.8	μg/L	1	5/20/2022 10:06 PM
Benzaldehyde	ND		3.8	μg/L	1	5/20/2022 10:06 PM
Benzo(a)anthracene	ND		19	μg/L	1	5/20/2022 10:06 PM
Benzo(a)pyrene	ND		19	μg/L	1	5/20/2022 10:06 PM
Benzo(b)fluoranthene	ND		19	μg/L	1	5/20/2022 10:06 PM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-201Lab ID: 22051511-08

Collection Date: 5/16/2022 04:45 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Benzo(g,h,i)perylene	ND		19	μg/L	1	5/20/2022 10:06 PM
Benzo(k)fluoranthene	ND		19	μg/L	1	5/20/2022 10:06 PM
Bis(2-chloroethoxy)methane	ND		19	μg/L	1	5/20/2022 10:06 PM
Bis(2-chloroethyl)ether	ND		19	μg/L	1	5/20/2022 10:06 PM
Bis(2-chloroisopropyl)ether	ND		19	μg/L	1	5/20/2022 10:06 PM
Bis(2-ethylhexyl)phthalate	ND		19	μg/L	1	5/20/2022 10:06 PM
Butyl benzyl phthalate	ND		19	μg/L	1	5/20/2022 10:06 PM
Caprolactam	ND		38	μg/L	1	5/20/2022 10:06 PM
Carbazole	ND		19	μg/L	1	5/20/2022 10:06 PM
Chrysene	ND		19	μg/L	1	5/20/2022 10:06 PM
Dibenzo(a,h)anthracene	ND		19	μg/L	1	5/20/2022 10:06 PM
Dibenzofuran	ND		19	μg/L	1	5/20/2022 10:06 PM
Diethyl phthalate	ND		19	μg/L	1	5/20/2022 10:06 PM
Dimethyl phthalate	ND		19	μg/L	1	5/20/2022 10:06 PM
Di-n-butyl phthalate	ND		19	μg/L	1	5/20/2022 10:06 PM
Di-n-octyl phthalate	ND		19	μg/L	1	5/20/2022 10:06 PM
Fluoranthene	ND		19	μg/L	1	5/20/2022 10:06 PM
Fluorene	ND		19	μg/L	1	5/20/2022 10:06 PM
Hexachlorobenzene	ND		19	μg/L	1	5/20/2022 10:06 PM
Hexachlorobutadiene	ND		19	μg/L	1	5/20/2022 10:06 PM
Hexachlorocyclopentadiene	ND		19	μg/L	1	5/20/2022 10:06 PM
Hexachloroethane	ND		19	μg/L	1	5/20/2022 10:06 PM
Indeno(1,2,3-cd)pyrene	ND		19	μg/L	1	5/20/2022 10:06 PM
Isophorone	ND		19	μg/L	1	5/20/2022 10:06 PM
Naphthalene	ND		19	μg/L	1	5/20/2022 10:06 PM
Nitrobenzene	ND		19	μg/L	1	5/20/2022 10:06 PM
N-Nitrosodi-n-propylamine	ND		19	μg/L	1	5/20/2022 10:06 PM
N-Nitrosodiphenylamine	ND		19	μg/L	1	5/20/2022 10:06 PM
Pentachlorophenol	ND		19	μg/L	1	5/20/2022 10:06 PM
Phenanthrene	ND		19	μg/L	1	5/20/2022 10:06 PM
Phenol	ND		19	μg/L	1	5/20/2022 10:06 PM
Pyrene	ND		19	μg/L	1	5/20/2022 10:06 PM
Surr: 2,4,6-Tribromophenol	68.7		27-83	%REC	1	5/20/2022 10:06 PM
Surr: 2-Fluorobiphenyl	67.6		26-79	%REC	1	5/20/2022 10:06 PM
Surr: 2-Fluorophenol	46.8		13-56	%REC	1	5/20/2022 10:06 PM
Surr: 4-Terphenyl-d14	79.6		43-106	%REC	1	5/20/2022 10:06 PM
Surr: Nitrobenzene-d5	67.2		29-80	%REC	1	5/20/2022 10:06 PM
Surr: Phenol-d6	30.9		10-35	%REC	1	5/20/2022 10:06 PM
VOL 450 5 000 4100 001100			01110000	_		

VOLATILE ORGANIC COMPOUNDS SW8260C Analyst: HJ

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-201Lab ID: 22051511-08

Collection Date: 5/16/2022 04:45 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Report Qual Limit	Units	Dilution Factor	Date Analyzed
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/20/2022 02:41 PM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	5/20/2022 02:41 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/20/2022 02:41 PM
1,1,2-Trichlorotrifluoroethane	ND	1.0	μg/L	1	5/20/2022 02:41 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	5/20/2022 02:41 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 02:41 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/20/2022 02:41 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	5/20/2022 02:41 PM
1,2-Dibromoethane	ND	1.0	μg/L	1	5/20/2022 02:41 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 02:41 PM
1,2-Dichloroethane	ND	1.0	μg/L	1	5/20/2022 02:41 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	5/20/2022 02:41 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 02:41 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 02:41 PM
2-Butanone	ND	5.0	μg/L	1	5/20/2022 02:41 PM
2-Hexanone	ND	5.0	μg/L	1	5/20/2022 02:41 PM
4-Methyl-2-pentanone	ND	1.0	μg/L	1	5/20/2022 02:41 PM
Acetone	ND	10	μg/L	1	5/20/2022 02:41 PM
Benzene	ND	1.0	μg/L	1	5/20/2022 02:41 PM
Bromodichloromethane	ND	1.0	μg/L	1	5/20/2022 02:41 PM
Bromoform	ND	1.0	μg/L	1	5/20/2022 02:41 PM
Bromomethane	ND	1.0	μg/L	1	5/20/2022 02:41 PM
Carbon disulfide	ND	1.0	μg/L	1	5/20/2022 02:41 PM
Carbon tetrachloride	ND	1.0	μg/L	1	5/20/2022 02:41 PM
Chlorobenzene	ND	1.0	μg/L	1	5/20/2022 02:41 PM
Chloroethane	ND	1.0	μg/L	1	5/20/2022 02:41 PM
Chloroform	ND	1.0	μg/L	1	5/20/2022 02:41 PM
Chloromethane	ND	1.0	μg/L	1	5/20/2022 02:41 PM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 02:41 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/20/2022 02:41 PM
Cyclohexane	ND	2.0	μg/L	1	5/20/2022 02:41 PM
Dibromochloromethane	ND	1.0	μg/L	1	5/20/2022 02:41 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/20/2022 02:41 PM
Ethylbenzene	ND	1.0	μg/L	1	5/20/2022 02:41 PM
Isopropylbenzene	ND	1.0		1	5/20/2022 02:41 PM
Methyl acetate	ND	2.0	μg/L	1	5/20/2022 02:41 PM
Methyl tert-butyl ether	ND	1.0	μg/L	1	5/20/2022 02:41 PM
Methylcyclohexane	ND	1.0		1	5/20/2022 02:41 PM
Methylene chloride	ND	5.0	μg/L	1	5/20/2022 02:41 PM
Styrene	ND	1.0	μg/L	1	5/20/2022 02:41 PM

Client: The Mannik & Smith Group, Inc.

Project: Former Mount Pleasant Landfill **Work Order:** 22051511

Sample ID: MW-201 **Lab ID:** 22051511-08

Collection Date: 5/16/2022 04:45 PM Matrix: GROUNDWATER

Analyses	Result Qua	Report al Limit	Units	Dilution Factor	Date Analyzed
Tetrachloroethene	ND	1.0	μg/L	1	5/20/2022 02:41 PM
Toluene	ND	1.0	μg/L	1	5/20/2022 02:41 PM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 02:41 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/20/2022 02:41 PM
Trichloroethene	ND	1.0	μg/L	1	5/20/2022 02:41 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	5/20/2022 02:41 PM
Vinyl chloride	ND	1.0	μg/L	1	5/20/2022 02:41 PM
Xylenes, Total	ND	3.0	μg/L	1	5/20/2022 02:41 PM
Surr: 1,2-Dichloroethane-d4	104	75-120	%REC	1	5/20/2022 02:41 PM
Surr: 4-Bromofluorobenzene	93.2	80-110	%REC	1	5/20/2022 02:41 PM
Surr: Dibromofluoromethane	99.4	85-115	%REC	1	5/20/2022 02:41 PM
Surr: Toluene-d8	98.6	85-110	%REC	1	5/20/2022 02:41 PM

Date: 01-Jun-2022

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order:22051511Sample ID:MW-202Lab ID:22051511-09

Collection Date: 5/16/2022 11:45 AM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
PCBS			SW8082	4	Prep: SW3511 5/20/22 16:59	Analyst: RM
Aroclor 1016	ND		0.20	μg/L	1	5/21/2022 07:08 AM
Aroclor 1221	ND		0.20	μg/L	1	5/21/2022 07:08 AM
Aroclor 1232	ND		0.20	μg/L	1	5/21/2022 07:08 AM
Aroclor 1242	ND		0.20	μg/L	1	5/21/2022 07:08 AM
Aroclor 1248	ND		0.20	μg/L	1	5/21/2022 07:08 AM
Aroclor 1254	ND		0.20	μg/L	1	5/21/2022 07:08 AM
Aroclor 1260	ND		0.20	μg/L	1	5/21/2022 07:08 AM
Aroclor 1262	ND		0.20	μg/L	1	5/21/2022 07:08 AM
Aroclor 1268	ND		0.20	μg/L	1	5/21/2022 07:08 AM
PCBs, Total	ND		0.20	μg/L	1	5/21/2022 07:08 AM
Surr: Decachlorobiphenyl	59.0)	42-153	%REC	1	5/21/2022 07:08 AM
Surr: Tetrachloro-m-xylene	84.5	i	48-127	%REC	1	5/21/2022 07:08 AM
MERCURY BY CVAA (DISSOLVED)			SW7470	4	Prep: SW7470 5/19/22 11:03	Analyst: EJC
Mercury	ND		0.00020	mg/L	1	5/19/2022 12:43 PM
METALS BY ICP-MS (DISSOLVED)			SW6020E	3	Prep: SW3015A 5/23/22 17:14	Analyst: STP
Aluminum	0.015		0.010	mg/L	1	5/23/2022 07:30 PM
Antimony	ND		0.0050	mg/L	1	5/23/2022 07:30 PM
Arsenic	ND		0.0050	mg/L	1	5/23/2022 07:30 PM
Barium	0.38		0.0050	mg/L	1	5/23/2022 07:30 PM
Beryllium	ND		0.0020	mg/L	1	5/23/2022 07:30 PM
Boron	0.69		0.020	mg/L	1	5/23/2022 07:30 PM
Cadmium	ND		0.0020	mg/L	1	5/23/2022 07:30 PM
Chromium	ND		0.0050	mg/L	1	5/23/2022 07:30 PM
Copper	ND		0.0050	mg/L	1	5/23/2022 07:30 PM
Lead	ND		0.0050	mg/L	1	5/23/2022 07:30 PM
Nickel	0.0056		0.0050	mg/L	1	5/23/2022 07:30 PM
Selenium	ND		0.0050	mg/L	1	5/23/2022 07:30 PM
Silver	ND		0.0050	mg/L	1	5/23/2022 07:30 PM
Thallium	ND		0.0050	mg/L	1	5/23/2022 07:30 PM
Zinc	ND		0.010	mg/L	1	5/23/2022 07:30 PM
PFAS BY EPA 537 MODIFIED			E537 MO	D	Prep: E537 Mod 5/23/22 17:15	Analyst: ENS
Fluorotelomer Sulphonic Acid 4:2 (FtS 4:2)	ND		5.1	ng/L	1	5/25/2022 08:23 AM
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	ND		5.1	ng/L	1	5/25/2022 08:23 AM
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	ND		5.1	ng/L	1	5/25/2022 08:23 AM
Perfluorobutanesulfonic Acid (PFBS)	22		5.1	ng/L	1	5/25/2022 08:23 AM
Perfluorobutanoic Acid (PFBA)	470		5.1	ng/L	1	5/25/2022 08:23 AM
Perfluorodecanesulfonic Acid (PFDS)	ND		5.1	ng/L	1	5/25/2022 08:23 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-202Lab ID: 22051511-09

Collection Date: 5/16/2022 11:45 AM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Perfluorodecanoic Acid (PFDA)	ND		5.1	ng/L	1	5/25/2022 08:23 AM
Perfluorododecanoic Acid (PFDoA)	ND		5.1	ng/L	1	5/25/2022 08:23 AM
Perfluoroheptanesulfonic Acid (PFHpS)	7.5		5.1	ng/L	1	5/25/2022 08:23 AM
Perfluoroheptanoic Acid (PFHpA)	45		5.1	ng/L	1	5/25/2022 08:23 AM
Perfluorohexanesulfonic Acid (PFHxS)	71		5.1	ng/L	1	5/25/2022 08:23 AM
Perfluorohexanoic Acid (PFHxA)	38		5.1	ng/L	1	5/25/2022 08:23 AM
Perfluorononanesulfonic Acid (PFNS)	ND		5.1	ng/L	1	5/25/2022 08:23 AM
Perfluorononanoic Acid (PFNA)	8.2		5.1	ng/L	1	5/25/2022 08:23 AM
Perfluorooctanesulfonamide (PFOSA)	ND		5.1	ng/L	1	5/25/2022 08:23 AM
Perfluorooctanesulfonic Acid (PFOS)	100		2.0	ng/L	1	5/25/2022 08:23 AM
Perfluorooctanoic Acid (PFOA)	170		2.0	ng/L	1	5/25/2022 08:23 AM
Perfluoropentanesulfonic Acid (PFPeS)	19		5.1	ng/L	1	5/25/2022 08:23 AM
Perfluoropentanoic Acid (PFPeA)	12		5.1	ng/L	1	5/25/2022 08:23 AM
Perfluorotetradecanoic Acid (PFTeA)	ND		5.1	ng/L	1	5/25/2022 08:23 AM
Perfluorotridecanoic Acid (PFTriA)	ND		5.1	ng/L	1	5/25/2022 08:23 AM
Perfluoroundecanoic Acid (PFUnA)	ND		5.1	ng/L	1	5/25/2022 08:23 AM
N-Ethylperfluorooctanesulfonamidoacetic Acid	ND		5.1	ng/L	1	5/25/2022 08:23 AM
N-Methylperfluorooctanesulfonamidoacetic Acid	ND		5.1	ng/L	1	5/25/2022 08:23 AM
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND		5.1	ng/L	1	5/25/2022 08:23 AM
4,8-Dioxa-3H-perfluorononanoic Acid (DONA)	ND		5.1	ng/L	1	5/25/2022 08:23 AM
11CI-Pf3OUdS	ND		5.1	ng/L	1	5/25/2022 08:23 AM
9CI-PF3ONS	ND		5.1	ng/L	1	5/25/2022 08:23 AM
Surr: 13C2-FtS 4:2	325	S	50-150	%REC	1	5/25/2022 08:23 AM
Surr: 13C2-FtS 6:2	357	S	50-150	%REC	1	5/25/2022 08:23 AM
Surr: 13C2-FtS 8:2	133		50-150	%REC	1	5/25/2022 08:23 AM
Surr: 13C2-PFDA	80.9		50-150	%REC	1	5/25/2022 08:23 AM
Surr: 13C2-PFDoA	74.2		50-150	%REC	1	5/25/2022 08:23 AM
Surr: 13C2-PFHxA	78.6		50-150	%REC	1	5/25/2022 08:23 AM
Surr: 13C2-PFTeA	86.0		50-150	%REC	1	5/25/2022 08:23 AM
Surr: 13C2-PFUnA	77.9		50-150	%REC	1	5/25/2022 08:23 AM
Surr: 13C3-HFPO-DA	72.6		50-150	%REC	1	5/25/2022 08:23 AM
Surr: 13C3-PFBS	71.7		50-150	%REC	1	5/25/2022 08:23 AM
Surr: 13C4-PFBA	83.3		50-150	%REC	1	5/25/2022 08:23 AM
Surr: 13C4-PFHpA	74.2		50-150	%REC	1	5/25/2022 08:23 AM
Surr: 13C4-PFOA	90.0		50-150	%REC	1	5/25/2022 08:23 AM
Surr: 13C4-PFOS	79.1		50-150	%REC	1	5/25/2022 08:23 AM
Surr: 13C5-PFNA	108		50-150	%REC	1	5/25/2022 08:23 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-202Lab ID: 22051511-09

Collection Date: 5/16/2022 11:45 AM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 13C5-PFPeA	74.1		50-150	%REC	1	5/25/2022 08:23 AM
Surr: 13C8-FOSA	72.6	;	50-150	%REC	1	5/25/2022 08:23 AM
Surr: 1802-PFHxS	78.7	•	50-150	%REC	1	5/25/2022 08:23 AM
Surr: d5-N-EtFOSAA	71.1		50-150	%REC	1	5/25/2022 08:23 AM
Surr: d3-N-MeFOSAA	63.0)	50-150	%REC	1	5/25/2022 08:23 AM
SEMI-VOLATILE ORGANIC COMPOUNDS			SW846 8	270D	Prep: SW3510 5/20/22 14:40	Analyst: EE
1,1`-Biphenyl	ND		19	μg/L	1	5/20/2022 10:26 PM
2,4,5-Trichlorophenol	ND		19	μg/L	1	5/20/2022 10:26 PM
2,4,6-Trichlorophenol	ND		19	μg/L	1	5/20/2022 10:26 PM
2,4-Dichlorophenol	ND		19	μg/L	1	5/20/2022 10:26 PM
2,4-Dimethylphenol	ND		19	μg/L	1	5/20/2022 10:26 PM
2,4-Dinitrophenol	ND		19	μg/L	1	5/20/2022 10:26 PM
2,4-Dinitrotoluene	ND		19	μg/L	1	5/20/2022 10:26 PM
2,6-Dinitrotoluene	ND		19	μg/L	1	5/20/2022 10:26 PM
2-Chloronaphthalene	ND		19	μg/L	1	5/20/2022 10:26 PM
2-Chlorophenol	ND		19	μg/L	1	5/20/2022 10:26 PM
2-Methylnaphthalene	ND		19	μg/L	1	5/20/2022 10:26 PM
2-Methylphenol	ND		19	μg/L	1	5/20/2022 10:26 PM
2-Nitroaniline	ND		19	μg/L	1	5/20/2022 10:26 PM
2-Nitrophenol	ND		19	μg/L	1	5/20/2022 10:26 PM
3&4-Methylphenol	ND		19	μg/L	1	5/20/2022 10:26 PM
3,3´-Dichlorobenzidine	ND		19	μg/L	1	5/20/2022 10:26 PM
3-Nitroaniline	ND		19	μg/L	1	5/20/2022 10:26 PM
4,6-Dinitro-2-methylphenol	ND		19	μg/L	1	5/20/2022 10:26 PM
4-Bromophenyl phenyl ether	ND		19	μg/L	1	5/20/2022 10:26 PM
4-Chloro-3-methylphenol	ND		19	μg/L	1	5/20/2022 10:26 PM
4-Chloroaniline	ND		19	μg/L	1	5/20/2022 10:26 PM
4-Chlorophenyl phenyl ether	ND		19	μg/L	1	5/20/2022 10:26 PM
4-Nitroaniline	ND		19	μg/L	1	5/20/2022 10:26 PM
4-Nitrophenol	ND		19	μg/L	1	5/20/2022 10:26 PM
Acenaphthene	ND		19	μg/L	1	5/20/2022 10:26 PM
Acenaphthylene	ND		19	μg/L	1	5/20/2022 10:26 PM
Acetophenone	ND		3.7	μg/L	1	5/20/2022 10:26 PM
Anthracene	ND		19	μg/L	1	5/20/2022 10:26 PM
Atrazine	ND		3.7	μg/L	1	5/20/2022 10:26 PM
Benzaldehyde	ND		3.7	μg/L	1	5/20/2022 10:26 PM
Benzo(a)anthracene	ND		19	μg/L	1	5/20/2022 10:26 PM
Benzo(a)pyrene	ND		19	μg/L	1	5/20/2022 10:26 PM
Benzo(b)fluoranthene	ND		19	μg/L	1	5/20/2022 10:26 PM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-202Lab ID: 22051511-09

Collection Date: 5/16/2022 11:45 AM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Benzo(g,h,i)perylene	ND		19	μg/L	1	5/20/2022 10:26 PM
Benzo(k)fluoranthene	ND		19	μg/L	1	5/20/2022 10:26 PM
Bis(2-chloroethoxy)methane	ND		19	μg/L	1	5/20/2022 10:26 PM
Bis(2-chloroethyl)ether	ND		19	μg/L	1	5/20/2022 10:26 PM
Bis(2-chloroisopropyl)ether	ND		19	μg/L	1	5/20/2022 10:26 PM
Bis(2-ethylhexyl)phthalate	ND		19	μg/L	1	5/20/2022 10:26 PM
Butyl benzyl phthalate	ND		19	μg/L	1	5/20/2022 10:26 PM
Caprolactam	ND		37	μg/L	1	5/20/2022 10:26 PM
Carbazole	ND		19	μg/L	1	5/20/2022 10:26 PM
Chrysene	ND		19	μg/L	1	5/20/2022 10:26 PM
Dibenzo(a,h)anthracene	ND		19	μg/L	1	5/20/2022 10:26 PM
Dibenzofuran	ND		19	μg/L	1	5/20/2022 10:26 PM
Diethyl phthalate	ND		19	μg/L	1	5/20/2022 10:26 PM
Dimethyl phthalate	ND		19	μg/L	1	5/20/2022 10:26 PM
Di-n-butyl phthalate	ND		19	μg/L	1	5/20/2022 10:26 PM
Di-n-octyl phthalate	ND		19	μg/L	1	5/20/2022 10:26 PM
Fluoranthene	ND		19	μg/L	1	5/20/2022 10:26 PM
Fluorene	ND		19	μg/L	1	5/20/2022 10:26 PM
Hexachlorobenzene	ND		19	μg/L	1	5/20/2022 10:26 PM
Hexachlorobutadiene	ND		19	μg/L	1	5/20/2022 10:26 PM
Hexachlorocyclopentadiene	ND		19	μg/L	1	5/20/2022 10:26 PM
Hexachloroethane	ND		19	μg/L	1	5/20/2022 10:26 PM
Indeno(1,2,3-cd)pyrene	ND		19	μg/L	1	5/20/2022 10:26 PM
Isophorone	ND		19	μg/L	1	5/20/2022 10:26 PM
Naphthalene	ND		19	μg/L	1	5/20/2022 10:26 PM
Nitrobenzene	ND		19	μg/L	1	5/20/2022 10:26 PM
N-Nitrosodi-n-propylamine	ND		19	μg/L	1	5/20/2022 10:26 PM
N-Nitrosodiphenylamine	ND		19	μg/L	1	5/20/2022 10:26 PM
Pentachlorophenol	ND		19	μg/L	1	5/20/2022 10:26 PM
Phenanthrene	ND		19	μg/L	1	5/20/2022 10:26 PM
Phenol	ND		19	μg/L	1	5/20/2022 10:26 PM
Pyrene	ND		19	μg/L	1	5/20/2022 10:26 PM
Surr: 2,4,6-Tribromophenol	71.7	•	27-83	%REC	1	5/20/2022 10:26 PM
Surr: 2-Fluorobiphenyl	61.4		26-79	%REC	1	5/20/2022 10:26 PM
Surr: 2-Fluorophenol	36.4		13-56	%REC	1	5/20/2022 10:26 PM
Surr: 4-Terphenyl-d14	82.1		43-106	%REC	1	5/20/2022 10:26 PM
Surr: Nitrobenzene-d5	57.4		29-80	%REC	1	5/20/2022 10:26 PM
Surr: Phenol-d6	24.2		10-35	%REC	1	5/20/2022 10:26 PM
			01110000	_		

VOLATILE ORGANIC COMPOUNDS SW8260C Analyst: MF

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-202Lab ID: 22051511-09

Collection Date: 5/16/2022 11:45 AM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Report Qual Limit	Units	Dilution Factor	Date Analyzed
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/20/2022 02:33 AM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	5/20/2022 02:33 AM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/20/2022 02:33 AM
1,1,2-Trichlorotrifluoroethane	ND	1.0	μg/L	1	5/20/2022 02:33 AM
1,1-Dichloroethane	ND	1.0	μg/L	1	5/20/2022 02:33 AM
1,1-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 02:33 AM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/20/2022 02:33 AM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	5/20/2022 02:33 AM
1,2-Dibromoethane	ND	1.0	μg/L	1	5/20/2022 02:33 AM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 02:33 AM
1,2-Dichloroethane	ND	1.0	μg/L	1	5/20/2022 02:33 AM
1,2-Dichloropropane	ND	1.0	μg/L	1	5/20/2022 02:33 AM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 02:33 AM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 02:33 AM
2-Butanone	ND	5.0	μg/L	1	5/20/2022 02:33 AM
2-Hexanone	ND	5.0	μg/L	1	5/20/2022 02:33 AM
4-Methyl-2-pentanone	ND	1.0	μg/L	1	5/20/2022 02:33 AM
Acetone	ND	10	μg/L	1	5/20/2022 02:33 AM
Benzene	ND	1.0	μg/L	1	5/20/2022 02:33 AM
Bromodichloromethane	ND	1.0	μg/L	1	5/20/2022 02:33 AM
Bromoform	ND	1.0	μg/L	1	5/20/2022 02:33 AM
Bromomethane	ND	1.0	μg/L	1	5/20/2022 02:33 AM
Carbon disulfide	ND	1.0	μg/L	1	5/20/2022 02:33 AM
Carbon tetrachloride	ND	1.0	μg/L	1	5/20/2022 02:33 AM
Chlorobenzene	6.1	1.0	μg/L	1	5/20/2022 02:33 AM
Chloroethane	ND	1.0	μg/L	1	5/20/2022 02:33 AM
Chloroform	ND	1.0	μg/L	1	5/20/2022 02:33 AM
Chloromethane	ND	1.0	μg/L	1	5/20/2022 02:33 AM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 02:33 AM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/20/2022 02:33 AM
Cyclohexane	ND	2.0	μg/L	1	5/20/2022 02:33 AM
Dibromochloromethane	ND	1.0	μg/L	1	5/20/2022 02:33 AM
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/20/2022 02:33 AM
Ethylbenzene	ND	1.0	μg/L	1	5/20/2022 02:33 AM
Isopropylbenzene	ND	1.0		1	5/20/2022 02:33 AM
Methyl acetate	ND	2.0	μg/L	1	5/20/2022 02:33 AM
Methyl tert-butyl ether	ND	1.0	μg/L	1	5/20/2022 02:33 AM
Methylcyclohexane	ND	1.0		1	5/20/2022 02:33 AM
Methylene chloride	ND	5.0	μg/L	1	5/20/2022 02:33 AM
Styrene	ND	1.0	μg/L	1	5/20/2022 02:33 AM

Client: The Mannik & Smith Group, Inc.

Project: Former Mount Pleasant Landfill Work Order: 22051511

Sample ID: MW-202 **Lab ID:** 22051511-09

Collection Date: 5/16/2022 11:45 AM Matrix: GROUNDWATER

Analyses	Result Qua	Report al Limit	Units	Dilution Factor	Date Analyzed
Tetrachloroethene	ND	1.0	μg/L	1	5/20/2022 02:33 AM
Toluene	ND	1.0	μg/L	1	5/20/2022 02:33 AM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 02:33 AM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/20/2022 02:33 AM
Trichloroethene	ND	1.0	μg/L	1	5/20/2022 02:33 AM
Trichlorofluoromethane	ND	1.0	μg/L	1	5/20/2022 02:33 AM
Vinyl chloride	ND	1.0	μg/L	1	5/20/2022 02:33 AM
Xylenes, Total	ND	3.0	μg/L	1	5/20/2022 02:33 AM
Surr: 1,2-Dichloroethane-d4	99.0	75-120	%REC	1	5/20/2022 02:33 AM
Surr: 4-Bromofluorobenzene	89.5	80-110	%REC	1	5/20/2022 02:33 AM
Surr: Dibromofluoromethane	102	85-115	%REC	1	5/20/2022 02:33 AM
Surr: Toluene-d8	99.4	85-110	%REC	1	5/20/2022 02:33 AM

Date: 01-Jun-2022

Client: The Mannik & Smith Group, Inc.

Project: Former Mount Pleasant Landfill
 Work Order: 22051511

 Sample ID: MW-10-20
 Lab ID: 22051511-10

Collection Date: 5/16/2022 03:53 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
PCBS			SW8082	4	Prep: SW3511 5/20/22 16:59	Analyst: RM
Aroclor 1016	ND	ı	0.20	μg/L	1	5/21/2022 07:47 AM
Aroclor 1221	ND	ı	0.20	μg/L	1	5/21/2022 07:47 AM
Aroclor 1232	ND	ı	0.20	μg/L	1	5/21/2022 07:47 AM
Aroclor 1242	ND	ı	0.20	μg/L	1	5/21/2022 07:47 AM
Aroclor 1248	ND	ı	0.20	μg/L	1	5/21/2022 07:47 AM
Aroclor 1254	ND	ı	0.20	μg/L	1	5/21/2022 07:47 AM
Aroclor 1260	ND	ı	0.20	μg/L	1	5/21/2022 07:47 AM
Aroclor 1262	ND	ı	0.20	μg/L	1	5/21/2022 07:47 AM
Aroclor 1268	ND	ı	0.20	μg/L	1	5/21/2022 07:47 AM
PCBs, Total	ND	ı	0.20	μg/L	1	5/21/2022 07:47 AM
Surr: Decachlorobiphenyl	68.1	,	42-153	%REC	1	5/21/2022 07:47 AM
Surr: Tetrachloro-m-xylene	86.5	5	48-127	%REC	1	5/21/2022 07:47 AM
MERCURY BY CVAA (DISSOLVED)			SW7470	4	Prep: SW7470 5/19/22 11:03	Analyst: EJC
Mercury	ND	1	0.00020	mg/L	1	5/19/2022 12:45 PM
METALS BY ICP-MS (DISSOLVED)			SW6020E	3	Prep: SW3015A 5/23/22 17:14	Analyst: STP
Aluminum	0.046	i	0.010	mg/L	1	5/23/2022 07:32 PM
Antimony	ND	ı	0.0050	mg/L	1	5/23/2022 07:32 PM
Arsenic	ND)	0.0050	mg/L	1	5/23/2022 07:32 PM
Barium	0.27	•	0.0050	mg/L	1	5/23/2022 07:32 PM
Beryllium	ND)	0.0020	mg/L	1	5/23/2022 07:32 PM
Boron	0.46	i	0.020	mg/L	1	5/23/2022 07:32 PM
Cadmium	ND)	0.0020	mg/L	1	5/23/2022 07:32 PM
Chromium	ND)	0.0050	mg/L	1	5/23/2022 07:32 PM
Copper	ND)	0.0050	mg/L	1	5/23/2022 07:32 PM
Lead	ND)	0.0050	mg/L	1	5/23/2022 07:32 PM
Nickel	ND)	0.0050	mg/L	1	5/23/2022 07:32 PM
Selenium	ND)	0.0050	mg/L	1	5/23/2022 07:32 PM
Silver	ND)	0.0050	mg/L	1	5/23/2022 07:32 PM
Thallium	ND)	0.0050	mg/L	1	5/23/2022 07:32 PM
Zinc	ND)	0.010	mg/L	1	5/25/2022 05:02 PM
PFAS BY EPA 537 MODIFIED			E537 MO	D	Prep: E537 Mod 5/23/22 17:15	Analyst: ENS
Fluorotelomer Sulphonic Acid 4:2 (FtS 4:2)	ND	ı	5.1	ng/L	1	5/25/2022 08:32 AM
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	ND	ı	5.1	ng/L	1	5/25/2022 08:32 AM
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	ND	ı	5.1	ng/L	1	5/25/2022 08:32 AM
Perfluorobutanesulfonic Acid (PFBS)	13	1	5.1	ng/L	1	5/25/2022 08:32 AM
Perfluorobutanoic Acid (PFBA)	44		5.1	ng/L	1	5/25/2022 08:32 AM
Perfluorodecanesulfonic Acid (PFDS)	ND	ı	5.1		1	5/25/2022 08:32 AM

Client: The Mannik & Smith Group, Inc.

Project: Former Mount Pleasant Landfill **Work Order:** 22051511

Sample ID: MW-10-20 **Lab ID:** 22051511-10

Collection Date: 5/16/2022 03:53 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Perfluorodecanoic Acid (PFDA)	ND		5.1	ng/L	1	5/25/2022 08:32 AM
Perfluorododecanoic Acid (PFDoA)	ND		5.1	ng/L	1	5/25/2022 08:32 AM
Perfluoroheptanesulfonic Acid (PFHpS)	7.0		5.1	ng/L	1	5/25/2022 08:32 AM
Perfluoroheptanoic Acid (PFHpA)	51		5.1	ng/L	1	5/25/2022 08:32 AM
Perfluorohexanesulfonic Acid (PFHxS)	72		5.1	ng/L	1	5/25/2022 08:32 AM
Perfluorohexanoic Acid (PFHxA)	37		5.1	ng/L	1	5/25/2022 08:32 AM
Perfluorononanesulfonic Acid (PFNS)	ND		5.1	ng/L	1	5/25/2022 08:32 AM
Perfluorononanoic Acid (PFNA)	9.0		5.1	ng/L	1	5/25/2022 08:32 AM
Perfluorooctanesulfonamide (PFOSA)	ND		5.1	ng/L	1	5/25/2022 08:32 AM
Perfluorooctanesulfonic Acid (PFOS)	50		2.0	ng/L	1	5/25/2022 08:32 AM
Perfluorooctanoic Acid (PFOA)	250		2.0	ng/L	1	5/25/2022 08:32 AM
Perfluoropentanesulfonic Acid (PFPeS)	20		5.1	ng/L	1	5/25/2022 08:32 AM
Perfluoropentanoic Acid (PFPeA)	22		5.1	ng/L	1	5/25/2022 08:32 AM
Perfluorotetradecanoic Acid (PFTeA)	ND		5.1	ng/L	1	5/25/2022 08:32 AM
Perfluorotridecanoic Acid (PFTriA)	ND		5.1	ng/L	1	5/25/2022 08:32 AM
Perfluoroundecanoic Acid (PFUnA)	ND		5.1	ng/L	1	5/25/2022 08:32 AM
N-Ethylperfluorooctanesulfonamidoacetic Acid	ND		5.1	ng/L	1	5/25/2022 08:32 AM
N-Methylperfluorooctanesulfonamidoacetic Acid	ND		5.1	ng/L	1	5/25/2022 08:32 AM
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND		5.1	ng/L	1	5/25/2022 08:32 AM
4,8-Dioxa-3H-perfluorononanoic Acid (DONA)	ND		5.1	ng/L	1	5/25/2022 08:32 AM
11CI-Pf3OUdS	ND		5.1	ng/L	1	5/25/2022 08:32 AM
9CI-PF3ONS	ND		5.1	ng/L	1	5/25/2022 08:32 AM
Surr: 13C2-FtS 4:2	285	S	50-150	%REC	1	5/25/2022 08:32 AM
Surr: 13C2-FtS 6:2	198	S	50-150	%REC	1	5/25/2022 08:32 AM
Surr: 13C2-FtS 8:2	86.9		50-150	%REC	1	5/25/2022 08:32 AM
Surr: 13C2-PFDA	74.5		50-150	%REC	1	5/25/2022 08:32 AM
Surr: 13C2-PFDoA	74.3		50-150	%REC	1	5/25/2022 08:32 AM
Surr: 13C2-PFHxA	104		50-150	%REC	1	5/25/2022 08:32 AM
Surr: 13C2-PFTeA	78.9		50-150	%REC	1	5/25/2022 08:32 AM
Surr: 13C2-PFUnA	73.8		50-150	%REC	1	5/25/2022 08:32 AM
Surr: 13C3-HFPO-DA	97.6		50-150	%REC	1	5/25/2022 08:32 AM
Surr: 13C3-PFBS	90.0		50-150	%REC	1	5/25/2022 08:32 AM
Surr: 13C4-PFBA	103		50-150	%REC	1	5/25/2022 08:32 AM
Surr: 13C4-PFHpA	89.3		50-150	%REC	1	5/25/2022 08:32 AM
Surr: 13C4-PFOA	94.4		50-150	%REC	1	5/25/2022 08:32 AM
Surr: 13C4-PFOS	84.6		50-150	%REC	1	5/25/2022 08:32 AM
Surr: 13C5-PFNA	92.9		50-150	%REC	1	5/25/2022 08:32 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-10-20Lab ID: 22051511-10

Collection Date: 5/16/2022 03:53 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 13C5-PFPeA	92.9		50-150	%REC	1	5/25/2022 08:32 AM
Surr: 13C8-FOSA	74.0		50-150	%REC	1	5/25/2022 08:32 AM
Surr: 1802-PFHxS	87.9		50-150	%REC	1	5/25/2022 08:32 AM
Surr: d5-N-EtFOSAA	63.8		50-150	%REC	1	5/25/2022 08:32 AM
Surr: d3-N-MeFOSAA	60.0		50-150	%REC	1	5/25/2022 08:32 AM
SEMI-VOLATILE ORGANIC COMPOUNDS			SW846 8	270D	Prep: SW3510 5/20/22 14:40	Analyst: EE
1,1`-Biphenyl	ND		20	μg/L	1	5/20/2022 10:47 PM
2,4,5-Trichlorophenol	ND		20	μg/L	1	5/20/2022 10:47 PM
2,4,6-Trichlorophenol	ND		20	μg/L	1	5/20/2022 10:47 PM
2,4-Dichlorophenol	ND		20	μg/L	1	5/20/2022 10:47 PM
2,4-Dimethylphenol	ND		20	μg/L	1	5/20/2022 10:47 PM
2,4-Dinitrophenol	ND		20	μg/L	1	5/20/2022 10:47 PM
2,4-Dinitrotoluene	ND		20	μg/L	1	5/20/2022 10:47 PM
2,6-Dinitrotoluene	ND		20	μg/L	1	5/20/2022 10:47 PM
2-Chloronaphthalene	ND		20	μg/L	1	5/20/2022 10:47 PM
2-Chlorophenol	ND		20	μg/L	1	5/20/2022 10:47 PM
2-Methylnaphthalene	ND		20	μg/L	1	5/20/2022 10:47 PM
2-Methylphenol	ND		20	μg/L	1	5/20/2022 10:47 PM
2-Nitroaniline	ND		20	μg/L	1	5/20/2022 10:47 PM
2-Nitrophenol	ND		20	μg/L	1	5/20/2022 10:47 PM
3&4-Methylphenol	ND		20	μg/L	1	5/20/2022 10:47 PM
3,3´-Dichlorobenzidine	ND		20	μg/L	1	5/20/2022 10:47 PM
3-Nitroaniline	ND		20	μg/L	1	5/20/2022 10:47 PM
4,6-Dinitro-2-methylphenol	ND		20	μg/L	1	5/20/2022 10:47 PM
4-Bromophenyl phenyl ether	ND		20	μg/L	1	5/20/2022 10:47 PM
4-Chloro-3-methylphenol	ND		20	μg/L	1	5/20/2022 10:47 PM
4-Chloroaniline	ND		20	μg/L	1	5/20/2022 10:47 PM
4-Chlorophenyl phenyl ether	ND		20	μg/L	1	5/20/2022 10:47 PM
4-Nitroaniline	ND		20	μg/L	1	5/20/2022 10:47 PM
4-Nitrophenol	ND		20	μg/L	1	5/20/2022 10:47 PM
Acenaphthene	ND		20	μg/L	1	5/20/2022 10:47 PM
Acenaphthylene	ND		20	μg/L	1	5/20/2022 10:47 PM
Acetophenone	ND		3.9	μg/L	1	5/20/2022 10:47 PM
Anthracene	ND		20	μg/L	1	5/20/2022 10:47 PM
Atrazine	ND		3.9	μg/L	1	5/20/2022 10:47 PM
Benzaldehyde	ND		3.9	μg/L	1	5/20/2022 10:47 PM
Benzo(a)anthracene	ND		20	μg/L	1	5/20/2022 10:47 PM
Benzo(a)pyrene	ND		20	μg/L	1	5/20/2022 10:47 PM
Benzo(b)fluoranthene	ND		20	μg/L	1	5/20/2022 10:47 PM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-10-20Lab ID: 22051511-10

Collection Date: 5/16/2022 03:53 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Benzo(g,h,i)perylene	ND		20	μg/L	1	5/20/2022 10:47 PM
Benzo(k)fluoranthene	ND		20	μg/L	1	5/20/2022 10:47 PM
Bis(2-chloroethoxy)methane	ND		20	μg/L	1	5/20/2022 10:47 PM
Bis(2-chloroethyl)ether	ND		20	μg/L	1	5/20/2022 10:47 PM
Bis(2-chloroisopropyl)ether	ND		20	μg/L	1	5/20/2022 10:47 PM
Bis(2-ethylhexyl)phthalate	ND		20	μg/L	1	5/20/2022 10:47 PM
Butyl benzyl phthalate	ND		20	μg/L	1	5/20/2022 10:47 PM
Caprolactam	ND		39	μg/L	1	5/20/2022 10:47 PM
Carbazole	ND		20	μg/L	1	5/20/2022 10:47 PM
Chrysene	ND		20	μg/L	1	5/20/2022 10:47 PM
Dibenzo(a,h)anthracene	ND		20	μg/L	1	5/20/2022 10:47 PM
Dibenzofuran	ND		20	μg/L	1	5/20/2022 10:47 PM
Diethyl phthalate	ND		20	μg/L	1	5/20/2022 10:47 PM
Dimethyl phthalate	ND		20	μg/L	1	5/20/2022 10:47 PM
Di-n-butyl phthalate	ND		20	μg/L	1	5/20/2022 10:47 PM
Di-n-octyl phthalate	ND		20	μg/L	1	5/20/2022 10:47 PM
Fluoranthene	ND		20	μg/L	1	5/20/2022 10:47 PM
Fluorene	ND		20	μg/L	1	5/20/2022 10:47 PM
Hexachlorobenzene	ND		20	μg/L	1	5/20/2022 10:47 PM
Hexachlorobutadiene	ND		20	μg/L	1	5/20/2022 10:47 PM
Hexachlorocyclopentadiene	ND		20	μg/L	1	5/20/2022 10:47 PM
Hexachloroethane	ND		20	μg/L	1	5/20/2022 10:47 PM
Indeno(1,2,3-cd)pyrene	ND		20	μg/L	1	5/20/2022 10:47 PM
Isophorone	ND		20	μg/L	1	5/20/2022 10:47 PM
Naphthalene	ND		20	μg/L	1	5/20/2022 10:47 PM
Nitrobenzene	ND		20	μg/L	1	5/20/2022 10:47 PM
N-Nitrosodi-n-propylamine	ND		20	μg/L	1	5/20/2022 10:47 PM
N-Nitrosodiphenylamine	ND		20	μg/L	1	5/20/2022 10:47 PM
Pentachlorophenol	ND		20	μg/L	1	5/20/2022 10:47 PM
Phenanthrene	ND		20	μg/L	1	5/20/2022 10:47 PM
Phenol	ND		20	μg/L	1	5/20/2022 10:47 PM
Pyrene	ND		20	μg/L	1	5/20/2022 10:47 PM
Surr: 2,4,6-Tribromophenol	75.5		27-83	%REC	1	5/20/2022 10:47 PM
Surr: 2-Fluorobiphenyl	73.2		26-79	%REC	1	5/20/2022 10:47 PM
Surr: 2-Fluorophenol	46.2		13-56	%REC	1	5/20/2022 10:47 PM
Surr: 4-Terphenyl-d14	86.2		43-106	%REC	1	5/20/2022 10:47 PM
Surr: Nitrobenzene-d5	72.0		29-80	%REC	1	5/20/2022 10:47 PM
Surr: Phenol-d6	30.6		10-35	%REC	1	5/20/2022 10:47 PM
			011/0000	_		

VOLATILE ORGANIC COMPOUNDS SW8260C Analyst: MF

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-10-20Lab ID: 22051511-10

Collection Date: 5/16/2022 03:53 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/20/2022 02:51 AM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	5/20/2022 02:51 AM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/20/2022 02:51 AM
1,1,2-Trichlorotrifluoroethane	ND	1.0	μg/L	1	5/20/2022 02:51 AM
1,1-Dichloroethane	ND	1.0	μg/L	1	5/20/2022 02:51 AM
1,1-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 02:51 AM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/20/2022 02:51 AM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	5/20/2022 02:51 AM
1,2-Dibromoethane	ND	1.0	μg/L	1	5/20/2022 02:51 AM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 02:51 AM
1,2-Dichloroethane	ND	1.0	μg/L	1	5/20/2022 02:51 AM
1,2-Dichloropropane	ND	1.0	μg/L	1	5/20/2022 02:51 AM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 02:51 AM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 02:51 AM
2-Butanone	ND	5.0	μg/L	1	5/20/2022 02:51 AM
2-Hexanone	ND	5.0	μg/L	1	5/20/2022 02:51 AM
4-Methyl-2-pentanone	ND	1.0	μg/L	1	5/20/2022 02:51 AM
Acetone	ND	10	μg/L	1	5/20/2022 02:51 AM
Benzene	ND	1.0	μg/L	1	5/20/2022 02:51 AM
Bromodichloromethane	ND	1.0	μg/L	1	5/20/2022 02:51 AM
Bromoform	ND	1.0	μg/L	1	5/20/2022 02:51 AM
Bromomethane	ND	1.0	μg/L	1	5/20/2022 02:51 AM
Carbon disulfide	ND	1.0	μg/L	1	5/20/2022 02:51 AM
Carbon tetrachloride	ND	1.0	μg/L	1	5/20/2022 02:51 AM
Chlorobenzene	ND	1.0	μg/L	1	5/20/2022 02:51 AM
Chloroethane	ND	1.0	μg/L	1	5/20/2022 02:51 AM
Chloroform	ND	1.0	μg/L	1	5/20/2022 02:51 AM
Chloromethane	ND	1.0	μg/L	1	5/20/2022 02:51 AM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 02:51 AM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/20/2022 02:51 AM
Cyclohexane	ND	2.0	μg/L	1	5/20/2022 02:51 AM
Dibromochloromethane	ND	1.0	μg/L	1	5/20/2022 02:51 AM
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/20/2022 02:51 AM
Ethylbenzene	ND	1.0	μg/L	1	5/20/2022 02:51 AM
Isopropylbenzene	ND	1.0	μg/L	1	5/20/2022 02:51 AM
Methyl acetate	ND	2.0		1	5/20/2022 02:51 AM
Methyl tert-butyl ether	ND	1.0		1	5/20/2022 02:51 AM
Methylcyclohexane	ND	1.0		1	5/20/2022 02:51 AM
Methylene chloride	ND	5.0		1	5/20/2022 02:51 AM
Styrene	ND	1.0	μg/L μg/L	1	5/20/2022 02:51 AM

Client: The Mannik & Smith Group, Inc.

Project: Former Mount Pleasant Landfill Work Order: 22051511

Sample ID: MW-10-20 **Lab ID:** 22051511-10

Collection Date: 5/16/2022 03:53 PM Matrix: GROUNDWATER

Analyses	Result Qu	Report ıal Limit	Units	Dilution Factor	Date Analyzed
Tetrachloroethene	ND	1.0	μg/L	1	5/20/2022 02:51 AM
Toluene	ND	1.0	μg/L	1	5/20/2022 02:51 AM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 02:51 AM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/20/2022 02:51 AM
Trichloroethene	ND	1.0	μg/L	1	5/20/2022 02:51 AM
Trichlorofluoromethane	ND	1.0	μg/L	1	5/20/2022 02:51 AM
Vinyl chloride	ND	1.0	μg/L	1	5/20/2022 02:51 AM
Xylenes, Total	ND	3.0	μg/L	1	5/20/2022 02:51 AM
Surr: 1,2-Dichloroethane-d4	98.4	75-120	%REC	1	5/20/2022 02:51 AM
Surr: 4-Bromofluorobenzene	87.4	80-110	%REC	1	5/20/2022 02:51 AM
Surr: Dibromofluoromethane	104	85-115	%REC	1	5/20/2022 02:51 AM
Surr: Toluene-d8	96.6	85-110	%REC	1	5/20/2022 02:51 AM

Date: 01-Jun-2022

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order:22051511Sample ID:MW-14-20Lab ID:22051511-11

Collection Date: 5/16/2022 10:55 AM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
PCBS			SW8082	4	Prep: SW3511 5/20/22 16:59	Analyst: RM
Aroclor 1016	ND		0.20	μg/L	1	5/21/2022 08:00 AM
Aroclor 1221	ND		0.20	μg/L	1	5/21/2022 08:00 AM
Aroclor 1232	ND		0.20	μg/L	1	5/21/2022 08:00 AM
Aroclor 1242	ND		0.20	μg/L	1	5/21/2022 08:00 AM
Aroclor 1248	ND		0.20	μg/L	1	5/21/2022 08:00 AM
Aroclor 1254	ND		0.20	μg/L	1	5/21/2022 08:00 AM
Aroclor 1260	ND		0.20	μg/L	1	5/21/2022 08:00 AM
Aroclor 1262	ND		0.20	μg/L	1	5/21/2022 08:00 AM
Aroclor 1268	ND		0.20	μg/L	1	5/21/2022 08:00 AM
PCBs, Total	ND		0.20	μg/L	1	5/21/2022 08:00 AM
Surr: Decachlorobiphenyl	83.1		42-153	%REC	1	5/21/2022 08:00 AM
Surr: Tetrachloro-m-xylene	83.6	;	48-127	%REC	1	5/21/2022 08:00 AM
MERCURY BY CVAA (DISSOLVED)			SW7470	Δ.	Prep: SW7470 5/19/22 11:03	Analyst: EJC
Mercury	ND		0.00020	mg/L	1	5/19/2022 12:52 PM
METALS BY ICP-MS (DISSOLVED)			SW6020E	3	Prep: SW3015A 5/23/22 17:14	Analyst: STP
Aluminum	0.029		0.010	mg/L	1	5/23/2022 07:34 PM
Antimony	ND		0.0050	mg/L	1	5/23/2022 07:34 PM
Arsenic	ND		0.0050	mg/L	1	5/23/2022 07:34 PM
Barium	0.14		0.0050	mg/L	1	5/23/2022 07:34 PM
Beryllium	ND		0.0020	mg/L	1	5/23/2022 07:34 PM
Boron	0.11		0.020	mg/L	1	5/23/2022 07:34 PM
Cadmium	ND		0.0020	mg/L	1	5/23/2022 07:34 PM
Chromium	ND		0.0050	mg/L	1	5/23/2022 07:34 PM
Copper	ND		0.0050	mg/L	1	5/23/2022 07:34 PM
Lead	ND		0.0050	mg/L	1	5/23/2022 07:34 PM
Nickel	ND		0.0050	mg/L	1	5/23/2022 07:34 PM
Selenium	ND		0.0050	mg/L	1	5/23/2022 07:34 PM
Silver	ND		0.0050	mg/L	1	5/23/2022 07:34 PM
Thallium	ND		0.0050	mg/L	1	5/23/2022 07:34 PM
Zinc	ND		0.010	mg/L	1	5/25/2022 05:03 PM
PFAS BY EPA 537 MODIFIED			E537 MO	D	Prep: E537 Mod 5/23/22 17:15	Analyst: ENS
Fluorotelomer Sulphonic Acid 4:2 (FtS 4:2)	ND		5.2	ng/L	1	5/25/2022 08:40 AM
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	ND		5.2	ng/L	1	5/25/2022 08:40 AM
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	ND		5.2	ng/L	1	5/25/2022 08:40 AM
Perfluorobutanesulfonic Acid (PFBS)	7.2		5.2	ng/L	1	5/25/2022 08:40 AM
Perfluorobutanoic Acid (PFBA)	30	ı	5.2	ng/L	1	5/25/2022 08:40 AM
Perfluorodecanesulfonic Acid (PFDS)	ND		5.2	ng/L	1	5/25/2022 08:40 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-14-20Lab ID: 22051511-11

Collection Date: 5/16/2022 10:55 AM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Perfluorodecanoic Acid (PFDA)	ND		5.2	ng/L	1	5/25/2022 08:40 AM
Perfluorododecanoic Acid (PFDoA)	ND		5.2	ng/L	1	5/25/2022 08:40 AM
Perfluoroheptanesulfonic Acid (PFHpS)	ND		5.2	ng/L	1	5/25/2022 08:40 AM
Perfluoroheptanoic Acid (PFHpA)	16		5.2	ng/L	1	5/25/2022 08:40 AM
Perfluorohexanesulfonic Acid (PFHxS)	28		5.2	ng/L	1	5/25/2022 08:40 AM
Perfluorohexanoic Acid (PFHxA)	13		5.2	ng/L	1	5/25/2022 08:40 AM
Perfluorononanesulfonic Acid (PFNS)	ND		5.2	ng/L	1	5/25/2022 08:40 AM
Perfluorononanoic Acid (PFNA)	ND		5.2	ng/L	1	5/25/2022 08:40 AM
Perfluorooctanesulfonamide (PFOSA)	ND		5.2	ng/L	1	5/25/2022 08:40 AM
Perfluorooctanesulfonic Acid (PFOS)	11		2.1	ng/L	1	5/25/2022 08:40 AM
Perfluorooctanoic Acid (PFOA)	57		2.1	ng/L	1	5/25/2022 08:40 AM
Perfluoropentanesulfonic Acid (PFPeS)	6.5		5.2	ng/L	1	5/25/2022 08:40 AM
Perfluoropentanoic Acid (PFPeA)	10		5.2	ng/L	1	5/25/2022 08:40 AM
Perfluorotetradecanoic Acid (PFTeA)	ND		5.2	ng/L	1	5/25/2022 08:40 AM
Perfluorotridecanoic Acid (PFTriA)	ND		5.2	ng/L	1	5/25/2022 08:40 AM
Perfluoroundecanoic Acid (PFUnA)	ND		5.2	ng/L	1	5/25/2022 08:40 AM
N-Ethylperfluorooctanesulfonamidoacetic Acid	ND		5.2	ng/L	1	5/25/2022 08:40 AM
N-Methylperfluorooctanesulfonamidoacetic Acid	ND		5.2	ng/L	1	5/25/2022 08:40 AM
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND		5.2	ng/L	1	5/25/2022 08:40 AM
4,8-Dioxa-3H-perfluorononanoic Acid (DONA)	ND		5.2	ng/L	1	5/25/2022 08:40 AM
11CI-Pf3OUdS	ND		5.2	ng/L	1	5/25/2022 08:40 AM
9CI-PF3ONS	ND		5.2	ng/L	1	5/25/2022 08:40 AM
Surr: 13C2-FtS 4:2	325	S	50-150	%REC	1	5/25/2022 08:40 AM
Surr: 13C2-FtS 6:2	195	S	50-150	%REC	1	5/25/2022 08:40 AM
Surr: 13C2-FtS 8:2	98.9		50-150	%REC	1	5/25/2022 08:40 AM
Surr: 13C2-PFDA	88.6		50-150	%REC	1	5/25/2022 08:40 AM
Surr: 13C2-PFDoA	83.5		50-150	%REC	1	5/25/2022 08:40 AM
Surr: 13C2-PFHxA	119		50-150	%REC	1	5/25/2022 08:40 AM
Surr: 13C2-PFTeA	90.7		50-150	%REC	1	5/25/2022 08:40 AM
Surr: 13C2-PFUnA	90.6		50-150	%REC	1	5/25/2022 08:40 AM
Surr: 13C3-HFPO-DA	108		50-150	%REC	1	5/25/2022 08:40 AM
Surr: 13C3-PFBS	102		50-150	%REC	1	5/25/2022 08:40 AM
Surr: 13C4-PFBA	118		50-150	%REC	1	5/25/2022 08:40 AM
Surr: 13C4-PFHpA	101		50-150	%REC	1	5/25/2022 08:40 AM
Surr: 13C4-PFOA	102		50-150	%REC	1	5/25/2022 08:40 AM
Surr: 13C4-PFOS	99.8		50-150	%REC	1	5/25/2022 08:40 AM
Surr: 13C5-PFNA	111		50-150	%REC	1	5/25/2022 08:40 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-14-20Lab ID: 22051511-11

Collection Date: 5/16/2022 10:55 AM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 13C5-PFPeA	106		50-150	%REC	1	5/25/2022 08:40 AM
Surr: 13C8-FOSA	97.4		50-150	%REC	1	5/25/2022 08:40 AM
Surr: 1802-PFHxS	112		50-150	%REC	1	5/25/2022 08:40 AM
Surr: d5-N-EtFOSAA	91.9		50-150	%REC	1	5/25/2022 08:40 AM
Surr: d3-N-MeFOSAA	70.9		50-150	%REC	1	5/25/2022 08:40 AM
SEMI-VOLATILE ORGANIC COMPOUNDS			SW846 8	270D	Prep: SW3510 5/20/22 14:40	Analyst: EE
1,1`-Biphenyl	ND		21	μg/L	1	5/20/2022 11:08 PM
2,4,5-Trichlorophenol	ND		21	μg/L	1	5/20/2022 11:08 PM
2,4,6-Trichlorophenol	ND		21	μg/L	1	5/20/2022 11:08 PM
2,4-Dichlorophenol	ND		21	μg/L	1	5/20/2022 11:08 PM
2,4-Dimethylphenol	ND		21	μg/L	1	5/20/2022 11:08 PM
2,4-Dinitrophenol	ND		21	μg/L	1	5/20/2022 11:08 PM
2,4-Dinitrotoluene	ND		21	μg/L	1	5/20/2022 11:08 PM
2,6-Dinitrotoluene	ND		21	μg/L	1	5/20/2022 11:08 PM
2-Chloronaphthalene	ND		21	μg/L	1	5/20/2022 11:08 PM
2-Chlorophenol	ND		21	μg/L	1	5/20/2022 11:08 PM
2-Methylnaphthalene	ND		21	μg/L	1	5/20/2022 11:08 PM
2-Methylphenol	ND		21	μg/L	1	5/20/2022 11:08 PM
2-Nitroaniline	ND		21	μg/L	1	5/20/2022 11:08 PM
2-Nitrophenol	ND		21	μg/L	1	5/20/2022 11:08 PM
3&4-Methylphenol	ND		21	μg/L	1	5/20/2022 11:08 PM
3,3'-Dichlorobenzidine	ND		21	μg/L	1	5/20/2022 11:08 PM
3-Nitroaniline	ND		21	μg/L	1	5/20/2022 11:08 PM
4,6-Dinitro-2-methylphenol	ND		21	μg/L	1	5/20/2022 11:08 PM
4-Bromophenyl phenyl ether	ND		21	μg/L	1	5/20/2022 11:08 PM
4-Chloro-3-methylphenol	ND		21	μg/L	1	5/20/2022 11:08 PM
4-Chloroaniline	ND		21	μg/L	1	5/20/2022 11:08 PM
4-Chlorophenyl phenyl ether	ND		21	μg/L	1	5/20/2022 11:08 PM
4-Nitroaniline	ND		21	μg/L	1	5/20/2022 11:08 PM
4-Nitrophenol	ND		21	μg/L	1	5/20/2022 11:08 PM
Acenaphthene	ND		21	μg/L	1	5/20/2022 11:08 PM
Acenaphthylene	ND		21	μg/L	1	5/20/2022 11:08 PM
Acetophenone	ND		4.2	μg/L	1	5/20/2022 11:08 PM
Anthracene	ND		21	μg/L	1	5/20/2022 11:08 PM
Atrazine	ND		4.2	μg/L	1	5/20/2022 11:08 PM
Benzaldehyde	ND		4.2	μg/L	1	5/20/2022 11:08 PM
Benzo(a)anthracene	ND		21	μg/L	1	5/20/2022 11:08 PM
Benzo(a)pyrene	ND		21	μg/L	1	5/20/2022 11:08 PM
Benzo(b)fluoranthene	ND		21	μg/L	1	5/20/2022 11:08 PM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-14-20Lab ID: 22051511-11

Collection Date: 5/16/2022 10:55 AM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Benzo(g,h,i)perylene	ND		21	μg/L	1	5/20/2022 11:08 PM
Benzo(k)fluoranthene	ND)	21	μg/L	1	5/20/2022 11:08 PM
Bis(2-chloroethoxy)methane	ND)	21	μg/L	1	5/20/2022 11:08 PM
Bis(2-chloroethyl)ether	ND)	21	μg/L	1	5/20/2022 11:08 PM
Bis(2-chloroisopropyl)ether	ND)	21	μg/L	1	5/20/2022 11:08 PM
Bis(2-ethylhexyl)phthalate	ND)	21	μg/L	1	5/20/2022 11:08 PM
Butyl benzyl phthalate	ND)	21	μg/L	1	5/20/2022 11:08 PM
Caprolactam	ND)	42	μg/L	1	5/20/2022 11:08 PM
Carbazole	ND)	21	μg/L	1	5/20/2022 11:08 PM
Chrysene	ND)	21	μg/L	1	5/20/2022 11:08 PM
Dibenzo(a,h)anthracene	ND)	21	μg/L	1	5/20/2022 11:08 PM
Dibenzofuran	ND)	21	μg/L	1	5/20/2022 11:08 PM
Diethyl phthalate	ND)	21	μg/L	1	5/20/2022 11:08 PM
Dimethyl phthalate	ND)	21	μg/L	1	5/20/2022 11:08 PM
Di-n-butyl phthalate	ND)	21	μg/L	1	5/20/2022 11:08 PM
Di-n-octyl phthalate	ND)	21	μg/L	1	5/20/2022 11:08 PM
Fluoranthene	ND)	21	μg/L	1	5/20/2022 11:08 PM
Fluorene	ND)	21	μg/L	1	5/20/2022 11:08 PM
Hexachlorobenzene	ND)	21	μg/L	1	5/20/2022 11:08 PM
Hexachlorobutadiene	ND)	21	μg/L	1	5/20/2022 11:08 PM
Hexachlorocyclopentadiene	ND)	21	μg/L	1	5/20/2022 11:08 PM
Hexachloroethane	ND)	21	μg/L	1	5/20/2022 11:08 PM
Indeno(1,2,3-cd)pyrene	ND)	21	μg/L	1	5/20/2022 11:08 PM
Isophorone	ND)	21	μg/L	1	5/20/2022 11:08 PM
Naphthalene	ND)	21	μg/L	1	5/20/2022 11:08 PM
Nitrobenzene	ND)	21	μg/L	1	5/20/2022 11:08 PM
N-Nitrosodi-n-propylamine	ND)	21	μg/L	1	5/20/2022 11:08 PM
N-Nitrosodiphenylamine	ND)	21	μg/L	1	5/20/2022 11:08 PM
Pentachlorophenol	ND)	21	μg/L	1	5/20/2022 11:08 PM
Phenanthrene	ND)	21	μg/L	1	5/20/2022 11:08 PM
Phenol	ND)	21	μg/L	1	5/20/2022 11:08 PM
Pyrene	ND)	21	μg/L	1	5/20/2022 11:08 PM
Surr: 2,4,6-Tribromophenol	77.7	7	27-83	%REC	1	5/20/2022 11:08 PM
Surr: 2-Fluorobiphenyl	71.8	3	26-79	%REC	1	5/20/2022 11:08 PM
Surr: 2-Fluorophenol	42.7	7	13-56	%REC	1	5/20/2022 11:08 PM
Surr: 4-Terphenyl-d14	89.0)	43-106	%REC	1	5/20/2022 11:08 PM
Surr: Nitrobenzene-d5	67.4	1	29-80	%REC	1	5/20/2022 11:08 PM
Surr: Phenol-d6	28.7	7	10-35	%REC	1	5/20/2022 11:08 PM
VOLATILE ORGANIC COMPOUNDS			C/MODEO			Analyst: ME

VOLATILE ORGANIC COMPOUNDS SW8260C Analyst: MF

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-14-20Lab ID: 22051511-11

Collection Date: 5/16/2022 10:55 AM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result Q	Report ual Limit	Units	Dilution Factor	Date Analyzed
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/20/2022 03:10 AM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	5/20/2022 03:10 AM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/20/2022 03:10 AM
1,1,2-Trichlorotrifluoroethane	ND	1.0	μg/L	1	5/20/2022 03:10 AM
1,1-Dichloroethane	ND	1.0	μg/L	1	5/20/2022 03:10 AM
1,1-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 03:10 AM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/20/2022 03:10 AM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	5/20/2022 03:10 AM
1,2-Dibromoethane	ND	1.0	μg/L	1	5/20/2022 03:10 AM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 03:10 AM
1,2-Dichloroethane	ND	1.0	μg/L	1	5/20/2022 03:10 AM
1,2-Dichloropropane	ND	1.0	μg/L	1	5/20/2022 03:10 AM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 03:10 AM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 03:10 AM
2-Butanone	ND	5.0	μg/L	1	5/20/2022 03:10 AM
2-Hexanone	ND	5.0	μg/L	1	5/20/2022 03:10 AM
4-Methyl-2-pentanone	ND	1.0	μg/L	1	5/20/2022 03:10 AM
Acetone	ND	10	μg/L	1	5/20/2022 03:10 AM
Benzene	ND	1.0	μg/L	1	5/20/2022 03:10 AM
Bromodichloromethane	ND	1.0	μg/L	1	5/20/2022 03:10 AM
Bromoform	ND	1.0	μg/L	1	5/20/2022 03:10 AM
Bromomethane	ND	1.0	μg/L	1	5/20/2022 03:10 AM
Carbon disulfide	ND	1.0	μg/L	1	5/20/2022 03:10 AM
Carbon tetrachloride	ND	1.0	μg/L	1	5/20/2022 03:10 AM
Chlorobenzene	ND	1.0	μg/L	1	5/20/2022 03:10 AM
Chloroethane	ND	1.0	μg/L	1	5/20/2022 03:10 AM
Chloroform	ND	1.0	μg/L	1	5/20/2022 03:10 AM
Chloromethane	ND	1.0	μg/L	1	5/20/2022 03:10 AM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 03:10 AM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/20/2022 03:10 AM
Cyclohexane	ND	2.0	μg/L	1	5/20/2022 03:10 AM
Dibromochloromethane	ND	1.0	μg/L	1	5/20/2022 03:10 AM
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/20/2022 03:10 AM
Ethylbenzene	ND	1.0	μg/L	1	5/20/2022 03:10 AM
Isopropylbenzene	ND	1.0	μg/L	1	5/20/2022 03:10 AM
Methyl acetate	ND	2.0	μg/L	1	5/20/2022 03:10 AM
Methyl tert-butyl ether	ND	1.0	μg/L	1	5/20/2022 03:10 AM
Methylcyclohexane	ND	1.0	μg/L	1	5/20/2022 03:10 AM
Methylene chloride	ND	5.0	μg/L	1	5/20/2022 03:10 AM
Styrene	ND	1.0	μg/L μg/L	1	5/20/2022 03:10 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-14-20Lab ID: 22051511-11

Collection Date: 5/16/2022 10:55 AM Matrix: GROUNDWATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Tetrachloroethene	ND		1.0	μg/L	1	5/20/2022 03:10 AM
Toluene	ND		1.0	μg/L	1	5/20/2022 03:10 AM
trans-1,2-Dichloroethene	ND		1.0	μg/L	1	5/20/2022 03:10 AM
trans-1,3-Dichloropropene	ND		1.0	μg/L	1	5/20/2022 03:10 AM
Trichloroethene	ND		1.0	μg/L	1	5/20/2022 03:10 AM
Trichlorofluoromethane	ND		1.0	μg/L	1	5/20/2022 03:10 AM
Vinyl chloride	ND		1.0	μg/L	1	5/20/2022 03:10 AM
Xylenes, Total	ND		3.0	μg/L	1	5/20/2022 03:10 AM
Surr: 1,2-Dichloroethane-d4	101		75-120	%REC	1	5/20/2022 03:10 AM
Surr: 4-Bromofluorobenzene	91.7		80-110	%REC	1	5/20/2022 03:10 AM
Surr: Dibromofluoromethane	105		85-115	%REC	1	5/20/2022 03:10 AM
Surr: Toluene-d8	100		85-110	%REC	1	5/20/2022 03:10 AM

Date: 01-Jun-2022

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order:22051511Sample ID:MW-15-20Lab ID:22051511-12

Collection Date: 5/16/2022 10:25 AM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
PCBS			SW8082	4	Prep: SW3511 5/20/22 16:59	Analyst: RM
Aroclor 1016	ND		0.20	μg/L	1	5/21/2022 08:12 AM
Aroclor 1221	ND		0.20	μg/L	1	5/21/2022 08:12 AM
Aroclor 1232	ND		0.20	μg/L	1	5/21/2022 08:12 AM
Aroclor 1242	ND		0.20	μg/L	1	5/21/2022 08:12 AM
Aroclor 1248	ND		0.20	μg/L	1	5/21/2022 08:12 AM
Aroclor 1254	ND		0.20	μg/L	1	5/21/2022 08:12 AM
Aroclor 1260	ND		0.20	μg/L	1	5/21/2022 08:12 AM
Aroclor 1262	ND		0.20	μg/L	1	5/21/2022 08:12 AM
Aroclor 1268	ND		0.20	μg/L	1	5/21/2022 08:12 AM
PCBs, Total	ND		0.20	μg/L	1	5/21/2022 08:12 AM
Surr: Decachlorobiphenyl	98.1		42-153	%REC	1	5/21/2022 08:12 AM
Surr: Tetrachloro-m-xylene	91.7	•	48-127	%REC	1	5/21/2022 08:12 AM
MERCURY BY CVAA (DISSOLVED)			SW7470	4	Prep: SW7470 5/19/22 11:03	Analyst: EJC
Mercury	ND		0.00020	mg/L	1	5/19/2022 12:54 PM
METALS BY ICP-MS (DISSOLVED)			SW6020E	3	Prep: SW3015A 5/23/22 17:14	Analyst: STP
Aluminum	0.019		0.010	mg/L	1	5/23/2022 07:35 PM
Antimony	ND		0.0050	mg/L	1	5/23/2022 07:35 PM
Arsenic	ND		0.0050	mg/L	1	5/23/2022 07:35 PM
Barium	0.18	}	0.0050	mg/L	1	5/23/2022 07:35 PM
Beryllium	ND		0.0020	mg/L	1	5/23/2022 07:35 PM
Boron	0.094		0.020	mg/L	1	5/23/2022 07:35 PM
Cadmium	ND		0.0020	mg/L	1	5/23/2022 07:35 PM
Chromium	ND		0.0050	mg/L	1	5/23/2022 07:35 PM
Copper	ND		0.0050	mg/L	1	5/23/2022 07:35 PM
Lead	ND		0.0050	mg/L	1	5/23/2022 07:35 PM
Nickel	ND		0.0050	mg/L	1	5/23/2022 07:35 PM
Selenium	ND		0.0050	mg/L	1	5/23/2022 07:35 PM
Silver	ND		0.0050	mg/L	1	5/23/2022 07:35 PM
Thallium	ND		0.0050	mg/L	1	5/23/2022 07:35 PM
Zinc	ND		0.010	mg/L	1	5/23/2022 07:35 PM
PFAS BY EPA 537 MODIFIED			E537 MO	D	Prep: E537 Mod 5/23/22 17:15	Analyst: ENS
Fluorotelomer Sulphonic Acid 4:2 (FtS 4:2)	ND		4.7	ng/L	1	5/25/2022 08:48 AM
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	ND		4.7	ng/L	1	5/25/2022 08:48 AM
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	ND		4.7		1	5/25/2022 08:48 AM
Perfluorobutanesulfonic Acid (PFBS)	9.3		4.7	ng/L	1	5/25/2022 08:48 AM
Perfluorobutanoic Acid (PFBA)	40)	4.7	ng/L	1	5/25/2022 08:48 AM
Perfluorodecanesulfonic Acid (PFDS)	ND		4.7	ng/L	1	5/25/2022 08:48 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-15-20Lab ID: 22051511-12

Collection Date: 5/16/2022 10:25 AM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Perfluorodecanoic Acid (PFDA)	ND		4.7	ng/L	1	5/25/2022 08:48 AM
Perfluorododecanoic Acid (PFDoA)	ND		4.7	ng/L	1	5/25/2022 08:48 AM
Perfluoroheptanesulfonic Acid (PFHpS)	ND		4.7	ng/L	1	5/25/2022 08:48 AM
Perfluoroheptanoic Acid (PFHpA)	12		4.7	ng/L	1	5/25/2022 08:48 AM
Perfluorohexanesulfonic Acid (PFHxS)	32		4.7	ng/L	1	5/25/2022 08:48 AM
Perfluorohexanoic Acid (PFHxA)	13		4.7	ng/L	1	5/25/2022 08:48 AM
Perfluorononanesulfonic Acid (PFNS)	ND		4.7	ng/L	1	5/25/2022 08:48 AM
Perfluorononanoic Acid (PFNA)	ND		4.7	ng/L	1	5/25/2022 08:48 AM
Perfluorooctanesulfonamide (PFOSA)	ND		4.7	ng/L	1	5/25/2022 08:48 AM
Perfluorooctanesulfonic Acid (PFOS)	7.1		1.9	ng/L	1	5/25/2022 08:48 AM
Perfluorooctanoic Acid (PFOA)	39		1.9	ng/L	1	5/25/2022 08:48 AM
Perfluoropentanesulfonic Acid (PFPeS)	5.5		4.7	ng/L	1	5/25/2022 08:48 AM
Perfluoropentanoic Acid (PFPeA)	17		4.7	ng/L	1	5/25/2022 08:48 AM
Perfluorotetradecanoic Acid (PFTeA)	ND		4.7	ng/L	1	5/25/2022 08:48 AM
Perfluorotridecanoic Acid (PFTriA)	ND		4.7	ng/L	1	5/25/2022 08:48 AM
Perfluoroundecanoic Acid (PFUnA)	ND		4.7	ng/L	1	5/25/2022 08:48 AM
N-Ethylperfluorooctanesulfonamidoacetic Acid	ND		4.7	ng/L	1	5/25/2022 08:48 AM
N-Methylperfluorooctanesulfonamidoacetic Acid	ND		4.7	ng/L	1	5/25/2022 08:48 AM
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND		4.7	ng/L	1	5/25/2022 08:48 AM
4,8-Dioxa-3H-perfluorononanoic Acid (DONA)	ND		4.7	ng/L	1	5/25/2022 08:48 AM
11CI-Pf3OUdS	ND		4.7	ng/L	1	5/25/2022 08:48 AM
9CI-PF3ONS	ND		4.7	ng/L	1	5/25/2022 08:48 AM
Surr: 13C2-FtS 4:2	206	S	50-150	%REC	1	5/25/2022 08:48 AM
Surr: 13C2-FtS 6:2	134		50-150	%REC	1	5/25/2022 08:48 AM
Surr: 13C2-FtS 8:2	86.0		50-150	%REC	1	5/25/2022 08:48 AM
Surr: 13C2-PFDA	84.3		50-150	%REC	1	5/25/2022 08:48 AM
Surr: 13C2-PFDoA	76.7		50-150	%REC	1	5/25/2022 08:48 AM
Surr: 13C2-PFHxA	114		50-150	%REC	1	5/25/2022 08:48 AM
Surr: 13C2-PFTeA	70.3		50-150	%REC	1	5/25/2022 08:48 AM
Surr: 13C2-PFUnA	91.2		50-150	%REC	1	5/25/2022 08:48 AM
Surr: 13C3-HFPO-DA	99.6		50-150	%REC	1	5/25/2022 08:48 AM
Surr: 13C3-PFBS	103		50-150	%REC	1	5/25/2022 08:48 AM
Surr: 13C4-PFBA	128		50-150	%REC	1	5/25/2022 08:48 AM
Surr: 13C4-PFHpA	103		50-150	%REC	1	5/25/2022 08:48 AM
Surr: 13C4-PFOA	106		50-150	%REC	1	5/25/2022 08:48 AM
Surr: 13C4-PFOS	97.2		50-150	%REC	1	5/25/2022 08:48 AM
Surr: 13C5-PFNA	126		50-150	%REC	1	5/25/2022 08:48 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-15-20Lab ID: 22051511-12

Collection Date: 5/16/2022 10:25 AM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 13C5-PFPeA	113		50-150	%REC	1	5/25/2022 08:48 AM
Surr: 13C8-FOSA	101		50-150	%REC	1	5/25/2022 08:48 AM
Surr: 1802-PFHxS	130		50-150	%REC	1	5/25/2022 08:48 AM
Surr: d5-N-EtFOSAA	87.0		50-150	%REC	1	5/25/2022 08:48 AM
Surr: d3-N-MeFOSAA	61.5		50-150	%REC	1	5/25/2022 08:48 AM
SEMI-VOLATILE ORGANIC COMPOUNDS			SW846 8	270D	Prep: SW3510 5/20/22 14:40	Analyst: EE
1,1`-Biphenyl	ND		19	μg/L	1	5/20/2022 11:28 PM
2,4,5-Trichlorophenol	ND		19	μg/L	1	5/20/2022 11:28 PM
2,4,6-Trichlorophenol	ND		19	μg/L	1	5/20/2022 11:28 PM
2,4-Dichlorophenol	ND		19	μg/L	1	5/20/2022 11:28 PM
2,4-Dimethylphenol	ND		19	μg/L	1	5/20/2022 11:28 PM
2,4-Dinitrophenol	ND		19	μg/L	1	5/20/2022 11:28 PM
2,4-Dinitrotoluene	ND		19	μg/L	1	5/20/2022 11:28 PM
2,6-Dinitrotoluene	ND		19	μg/L	1	5/20/2022 11:28 PM
2-Chloronaphthalene	ND		19	μg/L	1	5/20/2022 11:28 PM
2-Chlorophenol	ND		19	μg/L	1	5/20/2022 11:28 PM
2-Methylnaphthalene	ND		19	μg/L	1	5/20/2022 11:28 PM
2-Methylphenol	ND		19	μg/L	1	5/20/2022 11:28 PM
2-Nitroaniline	ND		19	μg/L	1	5/20/2022 11:28 PM
2-Nitrophenol	ND		19	μg/L	1	5/20/2022 11:28 PM
3&4-Methylphenol	ND		19	μg/L	1	5/20/2022 11:28 PM
3,3'-Dichlorobenzidine	ND		19	μg/L	1	5/20/2022 11:28 PM
3-Nitroaniline	ND		19	μg/L	1	5/20/2022 11:28 PM
4,6-Dinitro-2-methylphenol	ND		19	μg/L	1	5/20/2022 11:28 PM
4-Bromophenyl phenyl ether	ND		19	μg/L	1	5/20/2022 11:28 PM
4-Chloro-3-methylphenol	ND		19	μg/L	1	5/20/2022 11:28 PM
4-Chloroaniline	ND		19	μg/L	1	5/20/2022 11:28 PM
4-Chlorophenyl phenyl ether	ND		19	μg/L	1	5/20/2022 11:28 PM
4-Nitroaniline	ND		19	μg/L	1	5/20/2022 11:28 PM
4-Nitrophenol	ND		19	μg/L	1	5/20/2022 11:28 PM
Acenaphthene	ND		19	μg/L	1	5/20/2022 11:28 PM
Acenaphthylene	ND		19	μg/L	1	5/20/2022 11:28 PM
Acetophenone	ND		3.8	μg/L	1	5/20/2022 11:28 PM
Anthracene	ND		19	μg/L	1	5/20/2022 11:28 PM
Atrazine	ND		3.8	μg/L	1	5/20/2022 11:28 PM
Benzaldehyde	ND		3.8	μg/L	1	5/20/2022 11:28 PM
Benzo(a)anthracene	ND		19	μg/L	1	5/20/2022 11:28 PM
Benzo(a)pyrene	ND		19	μg/L	1	5/20/2022 11:28 PM
Benzo(b)fluoranthene	ND		19	μg/L	1	5/20/2022 11:28 PM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-15-20Lab ID: 22051511-12

Collection Date: 5/16/2022 10:25 AM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Benzo(g,h,i)perylene	ND		19	μg/L	1	5/20/2022 11:28 PM
Benzo(k)fluoranthene	ND		19	μg/L	1	5/20/2022 11:28 PM
Bis(2-chloroethoxy)methane	ND		19	μg/L	1	5/20/2022 11:28 PM
Bis(2-chloroethyl)ether	ND		19	μg/L	1	5/20/2022 11:28 PM
Bis(2-chloroisopropyl)ether	ND		19	μg/L	1	5/20/2022 11:28 PM
Bis(2-ethylhexyl)phthalate	ND		19	μg/L	1	5/20/2022 11:28 PM
Butyl benzyl phthalate	ND		19	μg/L	1	5/20/2022 11:28 PM
Caprolactam	ND		38	μg/L	1	5/20/2022 11:28 PM
Carbazole	ND		19	μg/L	1	5/20/2022 11:28 PM
Chrysene	ND		19	μg/L	1	5/20/2022 11:28 PM
Dibenzo(a,h)anthracene	ND		19	μg/L	1	5/20/2022 11:28 PM
Dibenzofuran	ND		19	μg/L	1	5/20/2022 11:28 PM
Diethyl phthalate	ND		19	μg/L	1	5/20/2022 11:28 PM
Dimethyl phthalate	ND		19	μg/L	1	5/20/2022 11:28 PM
Di-n-butyl phthalate	ND		19	μg/L	1	5/20/2022 11:28 PM
Di-n-octyl phthalate	ND		19	μg/L	1	5/20/2022 11:28 PM
Fluoranthene	ND		19	μg/L	1	5/20/2022 11:28 PM
Fluorene	ND		19	μg/L	1	5/20/2022 11:28 PM
Hexachlorobenzene	ND		19	μg/L	1	5/20/2022 11:28 PM
Hexachlorobutadiene	ND		19	μg/L	1	5/20/2022 11:28 PM
Hexachlorocyclopentadiene	ND		19	μg/L	1	5/20/2022 11:28 PM
Hexachloroethane	ND		19	μg/L	1	5/20/2022 11:28 PM
Indeno(1,2,3-cd)pyrene	ND		19	μg/L	1	5/20/2022 11:28 PM
Isophorone	ND		19	μg/L	1	5/20/2022 11:28 PM
Naphthalene	ND		19	μg/L	1	5/20/2022 11:28 PM
Nitrobenzene	ND		19	μg/L	1	5/20/2022 11:28 PM
N-Nitrosodi-n-propylamine	ND		19	μg/L	1	5/20/2022 11:28 PM
N-Nitrosodiphenylamine	ND		19	μg/L	1	5/20/2022 11:28 PM
Pentachlorophenol	ND		19	μg/L	1	5/20/2022 11:28 PM
Phenanthrene	ND		19	μg/L	1	5/20/2022 11:28 PM
Phenol	ND		19	μg/L	1	5/20/2022 11:28 PM
Pyrene	ND		19	μg/L	1	5/20/2022 11:28 PM
Surr: 2,4,6-Tribromophenol	73.0)	27-83	%REC	1	5/20/2022 11:28 PM
Surr: 2-Fluorobiphenyl	73.0)	26-79	%REC	1	5/20/2022 11:28 PM
Surr: 2-Fluorophenol	45.2		13-56	%REC	1	5/20/2022 11:28 PM
Surr: 4-Terphenyl-d14	88.1		43-106	%REC	1	5/20/2022 11:28 PM
Surr: Nitrobenzene-d5	69.6	;	29-80	%REC	1	5/20/2022 11:28 PM
Surr: Phenol-d6	30.2		10-35	%REC	1	5/20/2022 11:28 PM
			011/0000	_		

VOLATILE ORGANIC COMPOUNDS SW8260C Analyst: MF

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-15-20Lab ID: 22051511-12

Collection Date: 5/16/2022 10:25 AM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result Qua	Report l Limit	Units	Dilution Factor	Date Analyzed
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/20/2022 03:28 AM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	5/20/2022 03:28 AM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/20/2022 03:28 AM
1,1,2-Trichlorotrifluoroethane	ND	1.0	μg/L	1	5/20/2022 03:28 AM
1,1-Dichloroethane	ND	1.0	μg/L	1	5/20/2022 03:28 AM
1,1-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 03:28 AM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/20/2022 03:28 AM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	5/20/2022 03:28 AM
1,2-Dibromoethane	ND	1.0	μg/L	1	5/20/2022 03:28 AM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 03:28 AM
1,2-Dichloroethane	ND	1.0	μg/L	1	5/20/2022 03:28 AM
1,2-Dichloropropane	ND	1.0	μg/L	1	5/20/2022 03:28 AM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 03:28 AM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 03:28 AM
2-Butanone	ND	5.0	μg/L	1	5/20/2022 03:28 AM
2-Hexanone	ND	5.0	μg/L	1	5/20/2022 03:28 AM
4-Methyl-2-pentanone	ND	1.0	μg/L	1	5/20/2022 03:28 AM
Acetone	ND	10	μg/L	1	5/20/2022 03:28 AM
Benzene	ND	1.0	μg/L	1	5/20/2022 03:28 AM
Bromodichloromethane	ND	1.0	μg/L	1	5/20/2022 03:28 AM
Bromoform	ND	1.0	μg/L	1	5/20/2022 03:28 AM
Bromomethane	ND	1.0	μg/L	1	5/20/2022 03:28 AM
Carbon disulfide	ND	1.0	μg/L	1	5/20/2022 03:28 AM
Carbon tetrachloride	ND	1.0	μg/L	1	5/20/2022 03:28 AM
Chlorobenzene	ND	1.0	μg/L	1	5/20/2022 03:28 AM
Chloroethane	ND	1.0	μg/L	1	5/20/2022 03:28 AM
Chloroform	ND	1.0	μg/L	1	5/20/2022 03:28 AM
Chloromethane	ND	1.0	μg/L	1	5/20/2022 03:28 AM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 03:28 AM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/20/2022 03:28 AM
Cyclohexane	ND	2.0	μg/L	1	5/20/2022 03:28 AM
Dibromochloromethane	ND	1.0	μg/L	1	5/20/2022 03:28 AM
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/20/2022 03:28 AM
Ethylbenzene	ND	1.0	μg/L	1	5/20/2022 03:28 AM
Isopropylbenzene	ND	1.0	μg/L	1	5/20/2022 03:28 AM
Methyl acetate	ND	2.0	μg/L	1	5/20/2022 03:28 AM
Methyl tert-butyl ether	ND	1.0	μg/L	1	5/20/2022 03:28 AM
Methylcyclohexane	ND	1.0	μg/L	1	5/20/2022 03:28 AM
Methylene chloride	ND	5.0	μg/L	1	5/20/2022 03:28 AM
Styrene	ND	1.0	μg/L	1	5/20/2022 03:28 AM

Client: The Mannik & Smith Group, Inc.

Project: Former Mount Pleasant Landfill Work Order: 22051511

 Sample ID:
 MW-15-20
 Lab ID:
 22051511-12

 Collection Date:
 5/16/2022 10:25 AM
 Matrix:
 GROUNDWATER

Report **Dilution Analyses** Result **Date Analyzed** Qual Limit Units **Factor** Tetrachloroethene ND 1.0 μg/L 1 5/20/2022 03:28 AM Toluene ND 5/20/2022 03:28 AM 1.0 μg/L 1 μg/L trans-1.2-Dichloroethene ND 5/20/2022 03:28 AM 1.0 1 trans-1,3-Dichloropropene ND 1.0 μg/L 1 5/20/2022 03:28 AM Trichloroethene ND μg/L 1 5/20/2022 03:28 AM 1.0 Trichlorofluoromethane ND μg/L 1 5/20/2022 03:28 AM 1.0 Vinyl chloride ND 5/20/2022 03:28 AM 1.0 μg/L 1 Xylenes, Total ND 5/20/2022 03:28 AM 3.0 μg/L Surr: 1,2-Dichloroethane-d4 99.5 75-120 %REC 5/20/2022 03:28 AM Surr: 4-Bromofluorobenzene 94.2 80-110 %REC 5/20/2022 03:28 AM 5/20/2022 03:28 AM Surr: Dibromofluoromethane 103 85-115 %REC 1 Surr: Toluene-d8 101 85-110 %REC 5/20/2022 03:28 AM

Date: 01-Jun-2022

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:Field BlankLab ID: 22051511-13

Collection Date: 5/16/2022 03:45 PM Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
PFAS BY EPA 537 MODIFIED			E537 MO	D	Prep: E537 Mod 5/23/22 17:15	Analyst: ENS
Fluorotelomer Sulphonic Acid 4:2 (FtS 4:2)	ND		4.9	ng/L	1	5/25/2022 08:56 AM
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	ND		4.9	ng/L	1	5/25/2022 08:56 AM
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	ND		4.9	ng/L	1	5/25/2022 08:56 AM
Perfluorobutanesulfonic Acid (PFBS)	ND		4.9	ng/L	1	5/25/2022 08:56 AM
Perfluorobutanoic Acid (PFBA)	ND		4.9	ng/L	1	5/25/2022 08:56 AM
Perfluorodecanesulfonic Acid (PFDS)	ND		4.9	ng/L	1	5/25/2022 08:56 AM
Perfluorodecanoic Acid (PFDA)	ND		4.9	ng/L	1	5/25/2022 08:56 AM
Perfluorododecanoic Acid (PFDoA)	ND		4.9	ng/L	1	5/25/2022 08:56 AM
Perfluoroheptanesulfonic Acid (PFHpS)	ND		4.9	ng/L	1	5/25/2022 08:56 AM
Perfluoroheptanoic Acid (PFHpA)	ND		4.9	ng/L	1	5/25/2022 08:56 AM
Perfluorohexanesulfonic Acid (PFHxS)	ND		4.9	ng/L	1	5/25/2022 08:56 AM
Perfluorohexanoic Acid (PFHxA)	ND		4.9	ng/L	1	5/25/2022 08:56 AM
Perfluorononanesulfonic Acid (PFNS)	ND		4.9	ng/L	1	5/25/2022 08:56 AM
Perfluorononanoic Acid (PFNA)	ND		4.9	ng/L	1	5/25/2022 08:56 AM
Perfluorooctanesulfonamide (PFOSA)	ND		4.9	ng/L	1	5/25/2022 08:56 AM
Perfluorooctanesulfonic Acid (PFOS)	ND		2.0	ng/L	1	5/25/2022 08:56 AM
Perfluorooctanoic Acid (PFOA)	ND		2.0	ng/L	1	5/25/2022 08:56 AM
Perfluoropentanesulfonic Acid (PFPeS)	ND		4.9	ng/L	1	5/25/2022 08:56 AM
Perfluoropentanoic Acid (PFPeA)	ND		4.9	ng/L	1	5/25/2022 08:56 AM
Perfluorotetradecanoic Acid (PFTeA)	ND		4.9	ng/L	1	5/25/2022 08:56 AM
Perfluorotridecanoic Acid (PFTriA)	ND		4.9	ng/L	1	5/25/2022 08:56 AM
Perfluoroundecanoic Acid (PFUnA)	ND		4.9	ng/L	1	5/25/2022 08:56 AM
N-Ethylperfluorooctanesulfonamidoacetic Acid	ND		4.9	ng/L	1	5/25/2022 08:56 AM
N-Methylperfluorooctanesulfonamidoacetic Acid	ND		4.9	ng/L	1	5/25/2022 08:56 AM
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND		4.9	ng/L	1	5/25/2022 08:56 AM
4,8-Dioxa-3H-perfluorononanoic Acid (DONA)	ND		4.9	ng/L	1	5/25/2022 08:56 AM
11CI-Pf3OUdS	ND		4.9	ng/L	1	5/25/2022 08:56 AM
9CI-PF3ONS	ND		4.9	ng/L	1	5/25/2022 08:56 AM
Surr: 13C2-FtS 4:2	94.9)	50-150	%REC	1	5/25/2022 08:56 AM
Surr: 13C2-FtS 6:2	96.8	!	50-150	%REC	1	5/25/2022 08:56 AM
Surr: 13C2-FtS 8:2	98.2		50-150	%REC	1	5/25/2022 08:56 AM
Surr: 13C2-PFDA	96.7	•	50-150	%REC	1	5/25/2022 08:56 AM
Surr: 13C2-PFDoA	95.8	!	50-150	%REC	1	5/25/2022 08:56 AM
Surr: 13C2-PFHxA	108	!	50-150	%REC	1	5/25/2022 08:56 AM
Surr: 13C2-PFTeA	99.3	!	50-150	%REC	1	5/25/2022 08:56 AM
Surr: 13C2-PFUnA	92.6		50-150	%REC	1	5/25/2022 08:56 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:Field BlankLab ID: 22051511-13

Collection Date: 5/16/2022 03:45 PM Matrix: GROUNDWATER

nalyses	Result Qua	Report al Limit	Units	Dilution Factor	Date Analyzed
Surr: 13C3-HFPO-DA	100	50-150	%REC	1	5/25/2022 08:56 AM
Surr: 13C3-PFBS	102	50-150	%REC	1	5/25/2022 08:56 AM
Surr: 13C4-PFBA	108	50-150	%REC	1	5/25/2022 08:56 AM
Surr: 13C4-PFHpA	89.5	50-150	%REC	1	5/25/2022 08:56 AM
Surr: 13C4-PFOA	93.7	50-150	%REC	1	5/25/2022 08:56 AM
Surr: 13C4-PFOS	103	50-150	%REC	1	5/25/2022 08:56 AM
Surr: 13C5-PFNA	89.0	50-150	%REC	1	5/25/2022 08:56 AM
Surr: 13C5-PFPeA	95.1	50-150	%REC	1	5/25/2022 08:56 AM
Surr: 13C8-FOSA	73.9	50-150	%REC	1	5/25/2022 08:56 AM
Surr: 1802-PFHxS	84.1	50-150	%REC	1	5/25/2022 08:56 AM
Surr: d5-N-EtFOSAA	70.2	50-150	%REC	1	5/25/2022 08:56 AM
Surr: d3-N-MeFOSAA	74.4	50-150	%REC	1	5/25/2022 08:56 AM

Date: 01-Jun-2022

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:DUPLab ID: 22051511-14

Collection Date: 5/16/2022 Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
PCBS			SW8082	4	Prep: SW3511 5/20/22 16:59	Analyst: RM
Aroclor 1016	ND		0.20	μg/L	1	5/21/2022 08:25 AM
Aroclor 1221	ND		0.20	μg/L	1	5/21/2022 08:25 AM
Aroclor 1232	ND		0.20	μg/L	1	5/21/2022 08:25 AM
Aroclor 1242	ND		0.20	μg/L	1	5/21/2022 08:25 AM
Aroclor 1248	ND		0.20	μg/L	1	5/21/2022 08:25 AM
Aroclor 1254	ND		0.20	μg/L	1	5/21/2022 08:25 AM
Aroclor 1260	ND		0.20	μg/L	1	5/21/2022 08:25 AM
Aroclor 1262	ND		0.20	μg/L	1	5/21/2022 08:25 AM
Aroclor 1268	ND		0.20	μg/L	1	5/21/2022 08:25 AM
PCBs, Total	ND		0.20	μg/L	1	5/21/2022 08:25 AM
Surr: Decachlorobiphenyl	97.0		42-153	%REC	1	5/21/2022 08:25 AM
Surr: Tetrachloro-m-xylene	92.2		48-127	%REC	1	5/21/2022 08:25 AM
MERCURY BY CVAA (DISSOLVED)			SW7470	A	Prep: SW7470 5/19/22 11:03	Analyst: EJC
Mercury	ND		0.00020	mg/L	1	5/19/2022 12:56 PM
METALS BY ICP-MS (DISSOLVED)			SW6020E	3	Prep: SW3015A 5/23/22 17:14	Analyst: STP
Aluminum	0.034		0.010	mg/L	1	5/23/2022 07:40 PM
Antimony	ND		0.0050	mg/L	1	5/23/2022 07:40 PM
Arsenic	0.0098		0.0050	mg/L	1	5/23/2022 07:40 PM
Barium	0.29		0.0050	mg/L	1	5/23/2022 07:40 PM
Beryllium	ND		0.0020	mg/L	1	5/23/2022 07:40 PM
Boron	0.11		0.020	mg/L	1	5/23/2022 07:40 PM
Cadmium	ND		0.0020	mg/L	1	5/23/2022 07:40 PM
Chromium	ND		0.0050	mg/L	1	5/23/2022 07:40 PM
Copper	ND		0.0050	mg/L	1	5/23/2022 07:40 PM
Lead	ND		0.0050	mg/L	1	5/23/2022 07:40 PM
Nickel	ND		0.0050	mg/L	1	5/23/2022 07:40 PM
Selenium	ND		0.0050	mg/L	1	5/23/2022 07:40 PM
Silver	ND		0.0050	mg/L	1	5/23/2022 07:40 PM
Thallium	ND		0.0050	mg/L	1	5/23/2022 07:40 PM
Zinc	ND		0.010	mg/L	1	5/25/2022 05:05 PM
PFAS BY EPA 537 MODIFIED			E537 MO	D	Prep: E537 Mod 5/23/22 17:15	Analyst: ENS
Fluorotelomer Sulphonic Acid 4:2 (FtS 4:2)	ND		4.7	ng/L	1	5/25/2022 09:05 AM
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	ND		4.7	ng/L	1	5/25/2022 09:05 AM
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	ND		4.7	ng/L	1	5/25/2022 09:05 AM
Perfluorobutanesulfonic Acid (PFBS)	5.8		4.7	ng/L	1	5/25/2022 09:05 AM
Perfluorobutanoic Acid (PFBA)	8.1		4.7	ng/L	1	5/25/2022 09:05 AM
Perfluorodecanesulfonic Acid (PFDS)	ND		4.7	ng/L	1	5/25/2022 09:05 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:DUPLab ID: 22051511-14

Collection Date: 5/16/2022 Matrix: GROUNDWATER

Date: 01-Jun-2022

analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Perfluorodecanoic Acid (PFDA)	N)	4.7	ng/L	1	5/25/2022 09:05 AM
Perfluorododecanoic Acid (PFDoA)	NE)	4.7	ng/L	1	5/25/2022 09:05 AM
Perfluoroheptanesulfonic Acid (PFHpS)	NE)	4.7	ng/L	1	5/25/2022 09:05 AM
Perfluoroheptanoic Acid (PFHpA)	NE)	4.7	ng/L	1	5/25/2022 09:05 AM
Perfluorohexanesulfonic Acid (PFHxS)	15	5	4.7	ng/L	1	5/25/2022 09:05 AM
Perfluorohexanoic Acid (PFHxA)	5.4	4	4.7	ng/L	1	5/25/2022 09:05 AM
Perfluorononanesulfonic Acid (PFNS)	NE)	4.7	ng/L	1	5/25/2022 09:05 AM
Perfluorononanoic Acid (PFNA)	NE)	4.7	ng/L	1	5/25/2022 09:05 AM
Perfluorooctanesulfonamide (PFOSA)	NE)	4.7	ng/L	1	5/25/2022 09:05 AM
Perfluorooctanesulfonic Acid (PFOS)	NE)	1.9	ng/L	1	5/25/2022 09:05 AM
Perfluorooctanoic Acid (PFOA)	18	В	1.9	ng/L	1	5/25/2022 09:05 AM
Perfluoropentanesulfonic Acid (PFPeS)	5.	7	4.7	ng/L	1	5/25/2022 09:05 AM
Perfluoropentanoic Acid (PFPeA)	NE)	4.7	ng/L	1	5/25/2022 09:05 AM
Perfluorotetradecanoic Acid (PFTeA)	N)	4.7	ng/L	1	5/25/2022 09:05 AM
Perfluorotridecanoic Acid (PFTriA)	N)	4.7	ng/L	1	5/25/2022 09:05 AM
Perfluoroundecanoic Acid (PFUnA)	NE)	4.7	ng/L	1	5/25/2022 09:05 AM
N-Ethylperfluorooctanesulfonamidoacetic Acid	N)	4.7	ng/L	1	5/25/2022 09:05 AM
N-Methylperfluorooctanesulfonamidoacetic Acid	N)	4.7	ng/L	1	5/25/2022 09:05 AM
Hexafluoropropylene oxide dimer acid (HFPO-DA)	NE)	4.7	ng/L	1	5/25/2022 09:05 AM
4,8-Dioxa-3H-perfluorononanoic Acid (DONA)	NE)	4.7	ng/L	1	5/25/2022 09:05 AM
11CI-Pf3OUdS	N)	4.7	ng/L	1	5/25/2022 09:05 AM
9CI-PF3ONS	NE)	4.7	ng/L	1	5/25/2022 09:05 AM
Surr: 13C2-FtS 4:2	80.	4	50-150	%REC	1	5/25/2022 09:05 AM
Surr: 13C2-FtS 6:2	73.	5	50-150	%REC	1	5/25/2022 09:05 AM
Surr: 13C2-FtS 8:2	91.	3	50-150	%REC	1	5/25/2022 09:05 AM
Surr: 13C2-PFDA	68.	5	50-150	%REC	1	5/25/2022 09:05 AM
Surr: 13C2-PFDoA	55	2	50-150	%REC	1	5/25/2022 09:05 AM
Surr: 13C2-PFHxA	71.	6	50-150	%REC	1	5/25/2022 09:05 AM
Surr: 13C2-PFTeA	74.	7	50-150	%REC	1	5/25/2022 09:05 AM
Surr: 13C2-PFUnA	62.	8	50-150	%REC	1	5/25/2022 09:05 AM
Surr: 13C3-HFPO-DA	73.	6	50-150	%REC	1	5/25/2022 09:05 AM
Surr: 13C3-PFBS	90.	7	50-150	%REC	1	5/25/2022 09:05 AM
Surr: 13C4-PFBA	82.	9	50-150	%REC	1	5/25/2022 09:05 AM
Surr: 13C4-PFHpA	89.	3	50-150	%REC	1	5/25/2022 09:05 AM
Surr: 13C4-PFOA	81.	2	50-150	%REC	1	5/25/2022 09:05 AM
Surr: 13C4-PFOS	67.	0	50-150	%REC	1	5/25/2022 09:05 AM
Surr: 13C5-PFNA	65.	7	50-150	%REC	1	5/25/2022 09:05 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order:22051511Sample ID:DUPLab ID:22051511-14

Collection Date: 5/16/2022 Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 13C5-PFPeA	85.1		50-150	%REC	1	5/25/2022 09:05 AM
Surr: 13C8-FOSA	56.5		50-150	%REC	1	5/25/2022 09:05 AM
Surr: 1802-PFHxS	68.1		50-150	%REC	1	5/25/2022 09:05 AM
Surr: d5-N-EtFOSAA	53.6		50-150	%REC	1	5/25/2022 09:05 AM
Surr: d3-N-MeFOSAA	47.0	S	50-150	%REC	1	5/25/2022 09:05 AM
SEMI-VOLATILE ORGANIC COMPOUNDS			SW846 8	270D	Prep: SW3510 5/20/22 14:40	Analyst: EE
1,1`-Biphenyl	ND		19	μg/L	1	5/20/2022 11:49 PM
2,4,5-Trichlorophenol	ND		19	μg/L	1	5/20/2022 11:49 PM
2,4,6-Trichlorophenol	ND		19	μg/L	1	5/20/2022 11:49 PM
2,4-Dichlorophenol	ND		19	μg/L	1	5/20/2022 11:49 PM
2,4-Dimethylphenol	ND		19	μg/L	1	5/20/2022 11:49 PM
2,4-Dinitrophenol	ND		19	μg/L	1	5/20/2022 11:49 PM
2,4-Dinitrotoluene	ND		19	μg/L	1	5/20/2022 11:49 PM
2,6-Dinitrotoluene	ND		19	μg/L	1	5/20/2022 11:49 PM
2-Chloronaphthalene	ND		19	μg/L	1	5/20/2022 11:49 PM
2-Chlorophenol	ND		19	μg/L	1	5/20/2022 11:49 PM
2-Methylnaphthalene	ND		19	μg/L	1	5/20/2022 11:49 PM
2-Methylphenol	ND		19	μg/L	1	5/20/2022 11:49 PM
2-Nitroaniline	ND		19	μg/L	1	5/20/2022 11:49 PM
2-Nitrophenol	ND		19	μg/L	1	5/20/2022 11:49 PM
3&4-Methylphenol	ND		19	μg/L	1	5/20/2022 11:49 PM
3,3'-Dichlorobenzidine	ND		19	μg/L	1	5/20/2022 11:49 PM
3-Nitroaniline	ND		19	μg/L	1	5/20/2022 11:49 PM
4,6-Dinitro-2-methylphenol	ND		19	μg/L	1	5/20/2022 11:49 PM
4-Bromophenyl phenyl ether	ND		19	μg/L	1	5/20/2022 11:49 PM
4-Chloro-3-methylphenol	ND		19	μg/L	1	5/20/2022 11:49 PM
4-Chloroaniline	ND		19	μg/L	1	5/20/2022 11:49 PM
4-Chlorophenyl phenyl ether	ND		19	μg/L	1	5/20/2022 11:49 PM
4-Nitroaniline	ND		19	μg/L	1	5/20/2022 11:49 PM
4-Nitrophenol	ND		19	μg/L	1	5/20/2022 11:49 PM
Acenaphthene	ND		19	μg/L	1	5/20/2022 11:49 PM
Acenaphthylene	ND		19	μg/L	1	5/20/2022 11:49 PM
Acetophenone	ND		3.8	μg/L	1	5/20/2022 11:49 PM
Anthracene	ND		19	μg/L	1	5/20/2022 11:49 PM
Atrazine	ND		3.8	μg/L	1	5/20/2022 11:49 PM
Benzaldehyde	ND		3.8	μg/L	1	5/20/2022 11:49 PM
Benzo(a)anthracene	ND		19	μg/L	1	5/20/2022 11:49 PM
Benzo(a)pyrene	ND		19	μg/L	1	5/20/2022 11:49 PM
Benzo(b)fluoranthene	ND		19	μg/L	1	5/20/2022 11:49 PM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:DUPLab ID: 22051511-14

Collection Date: 5/16/2022 Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Benzo(g,h,i)perylene	ND		19	μg/L	1	5/20/2022 11:49 PM
Benzo(k)fluoranthene	ND		19	μg/L	1	5/20/2022 11:49 PM
Bis(2-chloroethoxy)methane	ND		19	μg/L	1	5/20/2022 11:49 PM
Bis(2-chloroethyl)ether	ND		19	μg/L	1	5/20/2022 11:49 PM
Bis(2-chloroisopropyl)ether	ND		19	μg/L	1	5/20/2022 11:49 PM
Bis(2-ethylhexyl)phthalate	ND		19	μg/L	1	5/20/2022 11:49 PM
Butyl benzyl phthalate	ND		19	μg/L	1	5/20/2022 11:49 PM
Caprolactam	ND		38	μg/L	1	5/20/2022 11:49 PM
Carbazole	ND		19	μg/L	1	5/20/2022 11:49 PM
Chrysene	ND		19	μg/L	1	5/20/2022 11:49 PM
Dibenzo(a,h)anthracene	ND		19	μg/L	1	5/20/2022 11:49 PM
Dibenzofuran	ND		19	μg/L	1	5/20/2022 11:49 PM
Diethyl phthalate	ND		19	μg/L	1	5/20/2022 11:49 PM
Dimethyl phthalate	ND		19	μg/L	1	5/20/2022 11:49 PM
Di-n-butyl phthalate	ND		19	μg/L	1	5/20/2022 11:49 PM
Di-n-octyl phthalate	ND		19	μg/L	1	5/20/2022 11:49 PM
Fluoranthene	ND		19	μg/L	1	5/20/2022 11:49 PM
Fluorene	ND		19	μg/L	1	5/20/2022 11:49 PM
Hexachlorobenzene	ND		19	μg/L	1	5/20/2022 11:49 PM
Hexachlorobutadiene	ND		19	μg/L	1	5/20/2022 11:49 PM
Hexachlorocyclopentadiene	ND		19	μg/L	1	5/20/2022 11:49 PM
Hexachloroethane	ND		19	μg/L	1	5/20/2022 11:49 PM
Indeno(1,2,3-cd)pyrene	ND		19	μg/L	1	5/20/2022 11:49 PM
Isophorone	ND		19	μg/L	1	5/20/2022 11:49 PM
Naphthalene	ND		19	μg/L	1	5/20/2022 11:49 PM
Nitrobenzene	ND		19	μg/L	1	5/20/2022 11:49 PM
N-Nitrosodi-n-propylamine	ND		19	μg/L	1	5/20/2022 11:49 PM
N-Nitrosodiphenylamine	ND		19	μg/L	1	5/20/2022 11:49 PM
Pentachlorophenol	ND		19	μg/L	1	5/20/2022 11:49 PM
Phenanthrene	ND		19	μg/L	1	5/20/2022 11:49 PM
Phenol	ND		19	μg/L	1	5/20/2022 11:49 PM
Pyrene	ND		19	μg/L	1	5/20/2022 11:49 PM
Surr: 2,4,6-Tribromophenol	76.7	•	27-83	%REC	1	5/20/2022 11:49 PM
Surr: 2-Fluorobiphenyl	77.3	:	26-79	%REC	1	5/20/2022 11:49 PM
Surr: 2-Fluorophenol	47.1		13-56	%REC	1	5/20/2022 11:49 PM
Surr: 4-Terphenyl-d14	86.9)	43-106	%REC	1	5/20/2022 11:49 PM
Surr: Nitrobenzene-d5	74.9)	29-80	%REC	1	5/20/2022 11:49 PM
Surr: Phenol-d6	32.2		10-35	%REC	1	5/20/2022 11:49 PM
VOL 450 5 000 4100 00400000000			01110000			

VOLATILE ORGANIC COMPOUNDS SW8260C Analyst: MF

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order:22051511Sample ID:DUPLab ID:22051511-14

Collection Date: 5/16/2022 Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,1,1-Trichloroethane	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
1,1,2,2-Tetrachloroethane	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
1,1,2-Trichloroethane	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
1,1,2-Trichlorotrifluoroethane	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
1,1-Dichloroethane	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
1,1-Dichloroethene	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
1,2,4-Trichlorobenzene	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
1,2-Dibromo-3-chloropropane	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
1,2-Dibromoethane	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
1,2-Dichlorobenzene	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
1,2-Dichloroethane	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
1,2-Dichloropropane	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
1,3-Dichlorobenzene	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
1,4-Dichlorobenzene	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
2-Butanone	ND)	5.0	μg/L	1	5/20/2022 03:47 AM
2-Hexanone	ND)	5.0	μg/L	1	5/20/2022 03:47 AM
4-Methyl-2-pentanone	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
Acetone	ND)	10	μg/L	1	5/20/2022 03:47 AM
Benzene	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
Bromodichloromethane	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
Bromoform	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
Bromomethane	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
Carbon disulfide	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
Carbon tetrachloride	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
Chlorobenzene	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
Chloroethane	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
Chloroform	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
Chloromethane	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
cis-1,2-Dichloroethene	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
cis-1,3-Dichloropropene	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
Cyclohexane	ND)	2.0	μg/L	1	5/20/2022 03:47 AM
Dibromochloromethane	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
Dichlorodifluoromethane	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
Ethylbenzene	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
Isopropylbenzene	ND)	1.0	μg/L	1	5/20/2022 03:47 AM
Methyl acetate	ND		2.0	μg/L	1	5/20/2022 03:47 AM
Methyl tert-butyl ether	ND		1.0	μg/L	1	5/20/2022 03:47 AM
Methylcyclohexane	ND		1.0	μg/L	1	5/20/2022 03:47 AM
Methylene chloride	ND		5.0	μg/L	1	5/20/2022 03:47 AM
Styrene	ND		1.0	μg/L	1	5/20/2022 03:47 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:DUPLab ID: 22051511-14

Collection Date: 5/16/2022 Matrix: GROUNDWATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Tetrachloroethene	ND		1.0	μg/L	1	5/20/2022 03:47 AM
Toluene	ND		1.0	μg/L	1	5/20/2022 03:47 AM
trans-1,2-Dichloroethene	ND		1.0	μg/L	1	5/20/2022 03:47 AM
trans-1,3-Dichloropropene	ND		1.0	μg/L	1	5/20/2022 03:47 AM
Trichloroethene	ND		1.0	μg/L	1	5/20/2022 03:47 AM
Trichlorofluoromethane	ND		1.0	μg/L	1	5/20/2022 03:47 AM
Vinyl chloride	ND		1.0	μg/L	1	5/20/2022 03:47 AM
Xylenes, Total	ND		3.0	μg/L	1	5/20/2022 03:47 AM
Surr: 1,2-Dichloroethane-d4	98.8		75-120	%REC	1	5/20/2022 03:47 AM
Surr: 4-Bromofluorobenzene	90.6		80-110	%REC	1	5/20/2022 03:47 AM
Surr: Dibromofluoromethane	101		85-115	%REC	1	5/20/2022 03:47 AM
Surr: Toluene-d8	101		85-110	%REC	1	5/20/2022 03:47 AM

Date: 01-Jun-2022

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order:22051511Sample ID:Trip BlankLab ID:22051511-15Collection Date:5/16/2022Matrix:WATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS				C		Analyst: MF
1,1,1-Trichloroethane	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
1,1,2,2-Tetrachloroethane	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
1,1,2-Trichloroethane	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
1,1,2-Trichlorotrifluoroethane	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
1,1-Dichloroethane	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
1,1-Dichloroethene	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
1,2,4-Trichlorobenzene	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
1,2-Dibromo-3-chloropropane	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
1,2-Dibromoethane	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
1,2-Dichlorobenzene	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
1,2-Dichloroethane	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
1,2-Dichloropropane	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
1,3-Dichlorobenzene	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
1,4-Dichlorobenzene	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
2-Butanone	NE)	5.0	μg/L	1	5/19/2022 11:47 PM
2-Hexanone	NE)	5.0	μg/L	1	5/19/2022 11:47 PM
4-Methyl-2-pentanone	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
Acetone	NE)	10	μg/L	1	5/19/2022 11:47 PM
Benzene	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
Bromodichloromethane	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
Bromoform	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
Bromomethane	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
Carbon disulfide	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
Carbon tetrachloride	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
Chlorobenzene	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
Chloroethane	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
Chloroform	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
Chloromethane	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
cis-1,2-Dichloroethene	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
cis-1,3-Dichloropropene	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
Cyclohexane	NE)	2.0	μg/L	1	5/19/2022 11:47 PM
Dibromochloromethane	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
Dichlorodifluoromethane	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
Ethylbenzene	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
Isopropylbenzene	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
Methyl acetate	NE)	2.0	μg/L	1	5/19/2022 11:47 PM
Methyl tert-butyl ether	NE)	1.0	μg/L	1	5/19/2022 11:47 PM
Methylcyclohexane	NE)	1.0	μg/L	1	5/19/2022 11:47 PM

Note: See Qualifiers page for a list of qualifiers and their definitions.

Date: 01-Jun-2022

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order:22051511Sample ID:Trip BlankLab ID:22051511-15Collection Date:5/16/2022Matrix:WATER

Analyses	Result	Report Qual Limit	Units	Dilution Factor	Date Analyzed
Methylene chloride	ND	5.0	μg/L	1	5/19/2022 11:47 PM
Styrene	ND	1.0	μg/L	1	5/19/2022 11:47 PM
Tetrachloroethene	ND	1.0	μg/L	1	5/19/2022 11:47 PM
Toluene	ND	1.0	μg/L	1	5/19/2022 11:47 PM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	5/19/2022 11:47 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/19/2022 11:47 PM
Trichloroethene	ND	1.0	μg/L	1	5/19/2022 11:47 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	5/19/2022 11:47 PM
Vinyl chloride	ND	1.0	μg/L	1	5/19/2022 11:47 PM
Xylenes, Total	ND	3.0	μg/L	1	5/19/2022 11:47 PM
Surr: 1,2-Dichloroethane-d4	98.1	75-120	%REC	1	5/19/2022 11:47 PM
Surr: 4-Bromofluorobenzene	89.2	80-110	%REC	1	5/19/2022 11:47 PM
Surr: Dibromofluoromethane	101	85-115	%REC	1	5/19/2022 11:47 PM
Surr: Toluene-d8	99.4	85-110	%REC	1	5/19/2022 11:47 PM

Date: 01-Jun-2022

Collection Date: 5/16/2022

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order:22051511Sample ID:MW-109Lab ID:22051511-16

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
PCBS			SW8082	4	Prep: SW3511 5/20/22 16:59	Analyst: RM
Aroclor 1016	ND		0.20	μg/L	1	5/21/2022 03:31 AM
Aroclor 1221	ND		0.20	μg/L	1	5/21/2022 03:31 AM
Aroclor 1232	ND		0.20	μg/L	1	5/21/2022 03:31 AM
Aroclor 1242	ND		0.20	μg/L	1	5/21/2022 03:31 AM
Aroclor 1248	ND		0.20	μg/L	1	5/21/2022 03:31 AM
Aroclor 1254	ND		0.20	μg/L	1	5/21/2022 03:31 AM
Aroclor 1260	ND		0.20	μg/L	1	5/21/2022 03:31 AM
Aroclor 1262	ND		0.20	μg/L	1	5/21/2022 03:31 AM
Aroclor 1268	ND		0.20	μg/L	1	5/21/2022 03:31 AM
PCBs, Total	ND		0.20	μg/L	1	5/21/2022 03:31 AM
Surr: Decachlorobiphenyl	71.1		42-153	%REC	1	5/21/2022 03:31 AM
Surr: Tetrachloro-m-xylene	86.7		48-127	%REC	1	5/21/2022 03:31 AM
MERCURY BY CVAA (DISSOLVED)			SW7470	A	Prep: SW7470 5/19/22 11:03	Analyst: EJC
Mercury	ND		0.00020	mg/L	1	5/19/2022 01:01 PM
METALS BY ICP-MS (DISSOLVED)			SW6020E	3	Prep: SW3015A 5/29/22 18:37	Analyst: STP
Aluminum	0.058		0.010	mg/L	1	5/31/2022 03:50 PM
Antimony	ND		0.0050	mg/L	1	5/23/2022 07:47 PM
Arsenic	ND		0.0050	mg/L	1	5/23/2022 07:47 PM
Barium	0.19		0.0050	mg/L	1	5/23/2022 07:47 PM
Beryllium	ND		0.0020	mg/L	1	5/23/2022 07:47 PM
Boron	0.13		0.020	mg/L	1	5/23/2022 07:47 PM
Cadmium	ND		0.0020	mg/L	1	5/23/2022 07:47 PM
Chromium	ND		0.0050	mg/L	1	5/23/2022 07:47 PM
Copper	ND		0.0050	mg/L	1	5/23/2022 07:47 PM
Lead	ND		0.0050	mg/L	1	5/23/2022 07:47 PM
Nickel	ND		0.0050	mg/L	1	5/23/2022 07:47 PM
Selenium	ND		0.0050	mg/L	1	5/23/2022 07:47 PM
Silver	ND		0.0050	mg/L	1	5/23/2022 07:47 PM
Thallium	ND		0.0050	mg/L	1	5/23/2022 07:47 PM
Zinc	ND		0.010	mg/L	1	5/23/2022 07:47 PM
PFAS BY EPA 537 MODIFIED			E537 MO	D	Prep: E537 Mod 5/23/22 17:15	Analyst: ENS
Fluorotelomer Sulphonic Acid 4:2 (FtS 4:2)	ND		4.9	ng/L	1	5/25/2022 09:13 AM
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	ND		4.9	ng/L	1	5/25/2022 09:13 AM
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	ND		4.9	ng/L	1	5/25/2022 09:13 AM
Perfluorobutanesulfonic Acid (PFBS)	5.8		4.9	ng/L	1	5/25/2022 09:13 AM
Perfluorobutanoic Acid (PFBA)	30		4.9	ng/L	1	5/25/2022 09:13 AM
Perfluorodecanesulfonic Acid (PFDS)	ND		4.9	ng/L	1	5/25/2022 09:13 AM

Note: See Qualifiers page for a list of qualifiers and their definitions.

Date: 01-Jun-2022

Matrix: GROUNDWATER

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-109Lab ID: 22051511-16

Collection Date: 5/16/2022 Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Perfluorodecanoic Acid (PFDA)	ND		4.9	ng/L	1	5/25/2022 09:13 AM
Perfluorododecanoic Acid (PFDoA)	ND		4.9	ng/L	1	5/25/2022 09:13 AM
Perfluoroheptanesulfonic Acid (PFHpS)	ND		4.9	ng/L	1	5/25/2022 09:13 AM
Perfluoroheptanoic Acid (PFHpA)	ND		4.9	ng/L	1	5/25/2022 09:13 AM
Perfluorohexanesulfonic Acid (PFHxS)	6.4		4.9	ng/L	1	5/25/2022 09:13 AM
Perfluorohexanoic Acid (PFHxA)	ND		4.9	ng/L	1	5/25/2022 09:13 AM
Perfluorononanesulfonic Acid (PFNS)	ND		4.9	ng/L	1	5/25/2022 09:13 AM
Perfluorononanoic Acid (PFNA)	ND		4.9	ng/L	1	5/25/2022 09:13 AM
Perfluorooctanesulfonamide (PFOSA)	ND		4.9	ng/L	1	5/25/2022 09:13 AM
Perfluorooctanesulfonic Acid (PFOS)	5.8		2.0	ng/L	1	5/25/2022 09:13 AM
Perfluorooctanoic Acid (PFOA)	13		2.0	ng/L	1	5/25/2022 09:13 AM
Perfluoropentanesulfonic Acid (PFPeS)	ND		4.9	ng/L	1	5/25/2022 09:13 AM
Perfluoropentanoic Acid (PFPeA)	ND		4.9	ng/L	1	5/25/2022 09:13 AM
Perfluorotetradecanoic Acid (PFTeA)	ND		4.9	ng/L	1	5/25/2022 09:13 AM
Perfluorotridecanoic Acid (PFTriA)	ND		4.9	ng/L	1	5/25/2022 09:13 AM
Perfluoroundecanoic Acid (PFUnA)	ND		4.9	ng/L	1	5/25/2022 09:13 AM
N-Ethylperfluorooctanesulfonamidoacetic Acid	ND		4.9	ng/L	1	5/25/2022 09:13 AM
N-Methylperfluorooctanesulfonamidoacetic Acid	ND		4.9	ng/L	1	5/25/2022 09:13 AM
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND		4.9	ng/L	1	5/25/2022 09:13 AM
4,8-Dioxa-3H-perfluorononanoic Acid (DONA)	ND		4.9	ng/L	1	5/25/2022 09:13 AM
11CI-Pf3OUdS	ND		4.9	ng/L	1	5/25/2022 09:13 AM
9CI-PF3ONS	ND		4.9	ng/L	1	5/25/2022 09:13 AM
Surr: 13C2-FtS 4:2	107		50-150	%REC	1	5/25/2022 09:13 AM
Surr: 13C2-FtS 6:2	92.7		50-150	%REC	1	5/25/2022 09:13 AM
Surr: 13C2-FtS 8:2	86.7		50-150	%REC	1	5/25/2022 09:13 AM
Surr: 13C2-PFDA	71.5		50-150	%REC	1	5/25/2022 09:13 AM
Surr: 13C2-PFDoA	54.9		50-150	%REC	1	5/25/2022 09:13 AM
Surr: 13C2-PFHxA	83.5		50-150	%REC	1	5/25/2022 09:13 AM
Surr: 13C2-PFTeA	67.3		50-150	%REC	1	5/25/2022 09:13 AM
Surr: 13C2-PFUnA	85.7		50-150	%REC	1	5/25/2022 09:13 AM
Surr: 13C3-HFPO-DA	72.0		50-150	%REC	1	5/25/2022 09:13 AM
Surr: 13C3-PFBS	102		50-150	%REC	1	5/25/2022 09:13 AM
Surr: 13C4-PFBA	112		50-150	%REC	1	5/25/2022 09:13 AM
Surr: 13C4-PFHpA	114		50-150	%REC	1	5/25/2022 09:13 AM
Surr: 13C4-PFOA	104		50-150	%REC	1	5/25/2022 09:13 AM
Surr: 13C4-PFOS	79.1		50-150	%REC	1	5/25/2022 09:13 AM
Surr: 13C5-PFNA	101		50-150	%REC	1	5/25/2022 09:13 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order:22051511Sample ID:MW-109Lab ID:22051511-16

Collection Date: 5/16/2022 Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 13C5-PFPeA	101		50-150	%REC	1	5/25/2022 09:13 AM
Surr: 13C8-FOSA	62.5	i	50-150	%REC	1	5/25/2022 09:13 AM
Surr: 1802-PFHxS	105	;	50-150	%REC	1	5/25/2022 09:13 AM
Surr: d5-N-EtFOSAA	72.4	!	50-150	%REC	1	5/25/2022 09:13 AM
Surr: d3-N-MeFOSAA	51.1		50-150	%REC	1	5/25/2022 09:13 AM
SEMI-VOLATILE ORGANIC COMPOUNDS			SW846 8	270D	Prep: SW3510 5/20/22 14:40	Analyst: EE
1,1`-Biphenyl	ND		18	μg/L	1	5/21/2022 12:09 AM
2,4,5-Trichlorophenol	ND		18	μg/L	1	5/21/2022 12:09 AM
2,4,6-Trichlorophenol	ND		18	μg/L	1	5/21/2022 12:09 AM
2,4-Dichlorophenol	ND		18	μg/L	1	5/21/2022 12:09 AM
2,4-Dimethylphenol	ND		18	μg/L	1	5/21/2022 12:09 AM
2,4-Dinitrophenol	ND		18	μg/L	1	5/21/2022 12:09 AM
2,4-Dinitrotoluene	ND		18	μg/L	1	5/21/2022 12:09 AM
2,6-Dinitrotoluene	ND		18	μg/L	1	5/21/2022 12:09 AM
2-Chloronaphthalene	ND		18	μg/L	1	5/21/2022 12:09 AM
2-Chlorophenol	ND		18	μg/L	1	5/21/2022 12:09 AM
2-Methylnaphthalene	ND		18	μg/L	1	5/21/2022 12:09 AM
2-Methylphenol	ND		18	μg/L	1	5/21/2022 12:09 AM
2-Nitroaniline	ND		18	μg/L	1	5/21/2022 12:09 AM
2-Nitrophenol	ND		18	μg/L	1	5/21/2022 12:09 AM
3&4-Methylphenol	ND		18	μg/L	1	5/21/2022 12:09 AM
3,3'-Dichlorobenzidine	ND		18	μg/L	1	5/21/2022 12:09 AM
3-Nitroaniline	ND		18	μg/L	1	5/21/2022 12:09 AM
4,6-Dinitro-2-methylphenol	ND		18	μg/L	1	5/21/2022 12:09 AM
4-Bromophenyl phenyl ether	ND		18	μg/L	1	5/21/2022 12:09 AM
4-Chloro-3-methylphenol	ND		18	μg/L	1	5/21/2022 12:09 AM
4-Chloroaniline	ND		18	μg/L	1	5/21/2022 12:09 AM
4-Chlorophenyl phenyl ether	ND		18	μg/L	1	5/21/2022 12:09 AM
4-Nitroaniline	ND		18	μg/L	1	5/21/2022 12:09 AM
4-Nitrophenol	ND		18	μg/L	1	5/21/2022 12:09 AM
Acenaphthene	ND		18	μg/L	1	5/21/2022 12:09 AM
Acenaphthylene	ND		18	μg/L	1	5/21/2022 12:09 AM
Acetophenone	ND		3.6	μg/L	1	5/21/2022 12:09 AM
Anthracene	ND		18	μg/L	1	5/21/2022 12:09 AM
Atrazine	ND		3.6	μg/L	1	5/21/2022 12:09 AM
Benzaldehyde	ND		3.6	μg/L	1	5/21/2022 12:09 AM
Benzo(a)anthracene	ND		18	μg/L	1	5/21/2022 12:09 AM
Benzo(a)pyrene	ND		18	μg/L	1	5/21/2022 12:09 AM
Benzo(b)fluoranthene	ND		18	μg/L	1	5/21/2022 12:09 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-109Lab ID: 22051511-16

Collection Date: 5/16/2022 Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Benzo(g,h,i)perylene	ND		18	μg/L	1	5/21/2022 12:09 AM
Benzo(k)fluoranthene	ND		18	μg/L	1	5/21/2022 12:09 AM
Bis(2-chloroethoxy)methane	ND		18	μg/L	1	5/21/2022 12:09 AM
Bis(2-chloroethyl)ether	ND		18	μg/L	1	5/21/2022 12:09 AM
Bis(2-chloroisopropyl)ether	ND		18	μg/L	1	5/21/2022 12:09 AM
Bis(2-ethylhexyl)phthalate	ND		18	μg/L	1	5/21/2022 12:09 AM
Butyl benzyl phthalate	ND		18	μg/L	1	5/21/2022 12:09 AM
Caprolactam	ND		36	μg/L	1	5/21/2022 12:09 AM
Carbazole	ND		18	μg/L	1	5/21/2022 12:09 AM
Chrysene	ND		18	μg/L	1	5/21/2022 12:09 AM
Dibenzo(a,h)anthracene	ND		18	μg/L	1	5/21/2022 12:09 AM
Dibenzofuran	ND		18	μg/L	1	5/21/2022 12:09 AM
Diethyl phthalate	ND		18	μg/L	1	5/21/2022 12:09 AM
Dimethyl phthalate	ND		18	μg/L	1	5/21/2022 12:09 AM
Di-n-butyl phthalate	ND		18	μg/L	1	5/21/2022 12:09 AM
Di-n-octyl phthalate	ND		18	μg/L	1	5/21/2022 12:09 AM
Fluoranthene	ND		18	μg/L	1	5/21/2022 12:09 AM
Fluorene	ND		18	μg/L	1	5/21/2022 12:09 AM
Hexachlorobenzene	ND)	18	μg/L	1	5/21/2022 12:09 AM
Hexachlorobutadiene	ND)	18	μg/L	1	5/21/2022 12:09 AM
Hexachlorocyclopentadiene	ND)	18	μg/L	1	5/21/2022 12:09 AM
Hexachloroethane	ND)	18	μg/L	1	5/21/2022 12:09 AM
Indeno(1,2,3-cd)pyrene	ND)	18	μg/L	1	5/21/2022 12:09 AM
Isophorone	ND)	18	μg/L	1	5/21/2022 12:09 AM
Naphthalene	ND)	18	μg/L	1	5/21/2022 12:09 AM
Nitrobenzene	ND		18	μg/L	1	5/21/2022 12:09 AM
N-Nitrosodi-n-propylamine	ND		18	μg/L	1	5/21/2022 12:09 AM
N-Nitrosodiphenylamine	ND		18	μg/L	1	5/21/2022 12:09 AM
Pentachlorophenol	ND		18	μg/L	1	5/21/2022 12:09 AM
Phenanthrene	ND		18	μg/L	1	5/21/2022 12:09 AM
Phenol	ND		18	μg/L	1	5/21/2022 12:09 AM
Pyrene	ND		18	μg/L	1	5/21/2022 12:09 AM
Surr: 2,4,6-Tribromophenol	70.1		27-83	%REC	1	5/21/2022 12:09 AM
Surr: 2-Fluorobiphenyl	75.0)	26-79	%REC	1	5/21/2022 12:09 AM
Surr: 2-Fluorophenol	41.8	3	13-56	%REC	1	5/21/2022 12:09 AM
Surr: 4-Terphenyl-d14	85.8	3	43-106	%REC	1	5/21/2022 12:09 AM
Surr: Nitrobenzene-d5	71.5	5	29-80	%REC	1	5/21/2022 12:09 AM
Surr: Phenol-d6	28.0)	10-35	%REC	1	5/21/2022 12:09 AM
VOLATILE ORGANIC COMPOUNDS			CMOSCOC			Analyst: ME

VOLATILE ORGANIC COMPOUNDS SW8260C Analyst: MF

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-109Lab ID: 22051511-16

Collection Date: 5/16/2022 Matrix: GROUNDWATER

Date: 01-Jun-2022

Analyses	Result Qu	Report al Limit	Units	Dilution Factor	Date Analyzed
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/20/2022 04:05 AM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	5/20/2022 04:05 AM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/20/2022 04:05 AM
1,1,2-Trichlorotrifluoroethane	ND	1.0	μg/L	1	5/20/2022 04:05 AM
1,1-Dichloroethane	ND	1.0	μg/L	1	5/20/2022 04:05 AM
1,1-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 04:05 AM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/20/2022 04:05 AM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	5/20/2022 04:05 AM
1,2-Dibromoethane	ND	1.0	μg/L	1	5/20/2022 04:05 AM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 04:05 AM
1,2-Dichloroethane	ND	1.0	μg/L	1	5/20/2022 04:05 AM
1,2-Dichloropropane	ND	1.0	μg/L	1	5/20/2022 04:05 AM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 04:05 AM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/20/2022 04:05 AM
2-Butanone	ND	5.0	μg/L	1	5/20/2022 04:05 AM
2-Hexanone	ND	5.0	μg/L	1	5/20/2022 04:05 AM
4-Methyl-2-pentanone	ND	1.0	μg/L	1	5/20/2022 04:05 AM
Acetone	ND	10	μg/L	1	5/20/2022 04:05 AM
Benzene	ND	1.0	μg/L	1	5/20/2022 04:05 AM
Bromodichloromethane	ND	1.0	μg/L	1	5/20/2022 04:05 AM
Bromoform	ND	1.0	μg/L	1	5/20/2022 04:05 AM
Bromomethane	ND	1.0	μg/L	1	5/20/2022 04:05 AM
Carbon disulfide	ND	1.0	μg/L	1	5/20/2022 04:05 AM
Carbon tetrachloride	ND	1.0	μg/L	1	5/20/2022 04:05 AM
Chlorobenzene	ND	1.0	μg/L	1	5/20/2022 04:05 AM
Chloroethane	ND	1.0	μg/L	1	5/20/2022 04:05 AM
Chloroform	ND	1.0	μg/L	1	5/20/2022 04:05 AM
Chloromethane	ND	1.0	μg/L	1	5/20/2022 04:05 AM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 04:05 AM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/20/2022 04:05 AM
Cyclohexane	ND	2.0	μg/L	1	5/20/2022 04:05 AM
Dibromochloromethane	ND	1.0	μg/L	1	5/20/2022 04:05 AM
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/20/2022 04:05 AM
Ethylbenzene	ND	1.0	μg/L	1	5/20/2022 04:05 AM
Isopropylbenzene	ND	1.0	μg/L	1	5/20/2022 04:05 AM
Methyl acetate	ND	2.0	μg/L	1	5/20/2022 04:05 AM
Methyl tert-butyl ether	ND	1.0	μg/L	1	5/20/2022 04:05 AM
Methylcyclohexane	ND	1.0	μg/L	1	5/20/2022 04:05 AM
Methylene chloride	ND	5.0	μg/L	1	5/20/2022 04:05 AM
Styrene	ND	1.0	μg/L	1	5/20/2022 04:05 AM

Client: The Mannik & Smith Group, Inc.

Project:Former Mount Pleasant LandfillWork Order: 22051511Sample ID:MW-109Lab ID: 22051511-16

Collection Date: 5/16/2022 Matrix: GROUNDWATER

Analyses	Result Qu	Report al Limit	Units	Dilution Factor	Date Analyzed
Tetrachloroethene	ND	1.0	μg/L	1	5/20/2022 04:05 AM
Toluene	ND	1.0	μg/L	1	5/20/2022 04:05 AM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	5/20/2022 04:05 AM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/20/2022 04:05 AM
Trichloroethene	ND	1.0	μg/L	1	5/20/2022 04:05 AM
Trichlorofluoromethane	ND	1.0	μg/L	1	5/20/2022 04:05 AM
Vinyl chloride	ND	1.0	μg/L	1	5/20/2022 04:05 AM
Xylenes, Total	ND	3.0	μg/L	1	5/20/2022 04:05 AM
Surr: 1,2-Dichloroethane-d4	98.2	75-120	%REC	1	5/20/2022 04:05 AM
Surr: 4-Bromofluorobenzene	83.2	80-110	%REC	1	5/20/2022 04:05 AM
Surr: Dibromofluoromethane	102	85-115	%REC	1	5/20/2022 04:05 AM
Surr: Toluene-d8	95.4	85-110	%REC	1	5/20/2022 04:05 AM

Date: 01-Jun-2022

Date: 01-Jun-22

QC BATCH REPORT

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 196634	Instrument ID G	GC14		Method	d: SW80	82A						
MBLK	Sample ID: PBLKW1	-196634-196	634			ι	Jnits: µg/L		Analysis	Date: 5/21	/2022 02:	:40 AN
Client ID:		Run ID	: GC14_2	220520A		Se	eqNo: 844	5303	Prep Date: 5/20)/2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Aroclor 1016		ND	0.20									
Aroclor 1221		ND	0.20									
Aroclor 1232		ND	0.20									
Aroclor 1242		ND	0.20									
Aroclor 1248		ND	0.20									
Aroclor 1254		ND	0.20									
Aroclor 1260		ND	0.20									
Aroclor 1262		ND	0.20									
Aroclor 1268		ND	0.20									
PCBs, Total		ND	0.20									
Surr: Decachlorobi	phenyl	0.2057	0	0.208		0	98.9	42-153	0			
Surr: Tetrachloro-n	n-xylene	0.168	0	0.208		0	80.8	48-127	0			
LCS	Sample ID: PLCSW1	-196634-196	634			ι	Jnits: µg/L		Analysis	Date: 5/21	/2022 03:	:05 AN
Client ID:		Run ID	: GC14_2	220520A		Se	eqNo: 844	5305	Prep Date: 5/20	0/2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Aroclor 1016		4.099	0.20	4.17		0	98.3	71-130	0			
Aroclor 1260		2.956	0.20	4.17		0	70.9	54-135	0			
Surr: Decachlorobi	phenyl	0.1543	0	0.208		0	74.2	42-153	0			
Surr: Tetrachloro-n		0.1947	0	0.208		0	93.6	48-127	0			
LCSD	Sample ID: PLCSDW	/1-196634-19	06634			ι	Jnits: µg/L		Analysis	Date: 5/21	/2022 03:	:18 AN
Client ID:		Run ID	: GC14_2	220520A		Se	eqNo: 844	5306	Prep Date: 5/20	0/2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Aroclor 1016		4.11	0.20	4.17		0	98.6	71-130	4.099	0.282	20	
Aroclor 1260		3.132	0.20	4.17		0	75.1	54-135	2.956	5.79	20	
Surr: Decachlorobi	phenyl	0.1875	0	0.208		0	90.1	42-153	0.1543	19.4	20	
Surr: Tetrachloro-n	n-xylene	0.1895	0	0.208		0	91.1	48-127	0.1947	2.69	20	
The following sampl	es were analyzed in t	this batch:	22 22 22	2051511-01E 2051511-04E 2051511-07E 2051511-10E 2051511-14E	3 22 3 22 3 22	2051 2051 2051	1511-02B 1511-05B 1511-08B 1511-11B 1511-16B	22 22	051511-03B 051511-06B 051511-09B 051511-12B			

22051511 Work Order:

Project: Former Mount Pleasant Landfill

Batch ID: 196557 Instrument ID HG4 Method: SW7470A Analysis Date: 5/19/2022 12:11 PM **MBLK** Sample ID: MBLK-196557-196557 Units: mq/L Client ID: Run ID: HG4 220519A SeqNo: 8435553 Prep Date: 5/19/2022 DF: 1 RPD SPK Ref RPD Ref Control Limit Value Limit Value SPK Val %REC %RPD Qual Analyte Result **PQL** ND 0.00020 Mercury LCS Sample ID: LCS-196557-196557 Units: mg/L Analysis Date: 5/19/2022 12:13 PM Client ID: Run ID: HG4_220519A SeqNo: 8435554 Prep Date: 5/19/2022 DF: 1 SPK Ref RPD Ref RPD Control Value Limit Value Limit SPK Val %REC %RPD Qual Result **PQL** Analyte 0.00020 0.002295 0 0 Mercury 0.002 115 80-120 MS Sample ID: 22051511-14DMS Units: mg/L Analysis Date: 5/19/2022 12:58 PM Client ID: DUP Run ID: HG4_220519A SeqNo: 8435579 Prep Date: 5/19/2022 RPD SPK Ref Control RPD Ref Value Limit Value Limit **PQL** SPK Val %REC %RPD Qual Analyte Result 0.00219 Mercury 0.00020 0.002 0.0000465 107 75-125 0 MSD Sample ID: 22051511-14DMSD Units: mg/L Analysis Date: 5/19/2022 12:59 PM Run ID: HG4_220519A Client ID: DUP SeqNo: 8435580 Prep Date: 5/19/2022 DF: 1 RPD SPK Ref Control RPD Ref Value Limit Value Limit SPK Val %REC %RPD Qual Analyte Result **PQL** 0.00222 0.00020 0.002 0.0000465 109 0.00219 20 Mercury 75-125 1.36 22051511-02D 22051511-03D The following samples were analyzed in this batch: 22051511-01D 22051511-04D 22051511-05D 22051511-06D 22051511-07D 22051511-08D 22051511-09D 22051511-10D 22051511-11D 22051511-12D

22051511-14D

22051511-16D

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 196747	Instrument ID ICPMS3	Method:	SW6020B
------------------	----------------------	---------	---------

MBLK	Sample ID: MBLK-196747-1967	17			Units: mg/	L	Analys	is Date: 5/2	3/2022 06	54 PM
Client ID:	Run I	D: ICPMS	3_220523A		SeqNo: 844	7286	Prep Date: 5/2	23/2022	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum	ND	0.010								
Antimony	ND	0.0050								
Arsenic	ND	0.0050								
Barium	ND	0.0050								
Beryllium	ND	0.0020								
Boron	ND	0.020								
Cadmium	ND	0.0020								
Chromium	ND	0.0050								
Copper	0.002204	0.0050								J
Lead	ND	0.0050								
Nickel	ND	0.0050								
Selenium	ND	0.0050								
Silver	ND	0.0050								
Thallium	ND	0.0050								
Zinc	0.02586	0.010								

LCS	Sample ID: LCS-196747-196747	•			L	Jnits: mg/	L	Analysis	Date: 5/2	3/2022 06:	55 PM
Client ID:	Run I	D: ICPMS	3_220523A		Se	qNo: 844 7	7288	Prep Date: 5/23	3/2022	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum	0.1013	0.010	0.1		0	101	80-120	0			
Antimony	0.09687	0.0050	0.1		0	96.9	80-120	0			
Arsenic	0.09878	0.0050	0.1		0	98.8	80-120	0			
Barium	0.1001	0.0050	0.1		0	100	80-120	0			
Beryllium	0.09945	0.0020	0.1		0	99.4	80-120	0			
Boron	0.5116	0.020	0.5		0	102	80-120	0			
Cadmium	0.09773	0.0020	0.1		0	97.7	80-120	0			
Chromium	0.1026	0.0050	0.1		0	103	80-120	0			
Copper	0.1057	0.0050	0.1		0	106	80-120	0			
Lead	0.09594	0.0050	0.1		0	95.9	80-120	0			
Nickel	0.1042	0.0050	0.1		0	104	80-120	0			
Selenium	0.09634	0.0050	0.1		0	96.3	80-120	0			
Silver	0.08183	0.0050	0.1		0	81.8	80-120	0			
Thallium	0.097	0.0050	0.1		0	97	80-120	0			
Zinc	0.1176	0.010	0.1		0	118	80-120	0			В

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 196747	Instrument ID ICPMS3	Method:	SW6020B
------------------	----------------------	---------	---------

MS	Sample ID: 22051511-01DMS				Units: mg/	L	Analysi	s Date: 5/2	3/2022 07:	:12 PM
Client ID: MW-101	Run	ID: ICPMS	3_220523A		SeqNo: 844 7	7299	Prep Date: 5/2	3/2022	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum	0.1496	0.010	0.1	0.01547	7 134	75-125	()		S
Antimony	0.09946	0.0050	0.1	0.0001936	99.3	75-125	()		
Arsenic	0.1054	0.0050	0.1	0.004369	9 101	75-125	()		
Barium	0.1957	0.0050	0.1	0.09689	98.9	75-125	()		
Beryllium	0.1026	0.0020	0.1	0.0000077	7 103	75-125	()		
Boron	0.8189	0.020	0.5	0.2965	5 104	75-125	()		
Cadmium	0.09819	0.0020	0.1	(98.2	75-125	()		
Chromium	0.1045	0.0050	0.1	0.0008184	104	75-125	()		
Copper	0.1013	0.0050	0.1	0.0004356	3 101	75-125	()		
Lead	0.09861	0.0050	0.1	-0.001705	5 100	75-125	()		
Nickel	0.1016	0.0050	0.1	0.002687	7 98.9	75-125	()		
Selenium	0.09838	0.0050	0.1	0.0003124	4 98.1	75-125	()		
Silver	0.07876	0.0050	0.1	0.0000044	78.8	75-125	()		
Thallium	0.0994	0.0050	0.1	-0.0000099	99.4	75-125	()		
Zinc	0.3072	0.010	0.1	0.00695	5 300	75-125	()		BS

MSD	Sample ID: 22051511-01DMSD			ı	Units: mg/	L	Analysis	Date: 5/23	3/2022 07:	13 PM
Client ID: MW-101	Run	ID: ICPMS	3_220523A	Se	eqNo: 844	7300	Prep Date: 5/23	/2022	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum	0.1147	0.010	0.1	0.01547	99.2	75-125	0.1496	26.4	20	R
Antimony	0.0971	0.0050	0.1	0.0001936	96.9	75-125	0.09946	2.39	20	
Arsenic	0.1036	0.0050	0.1	0.004369	99.2	75-125	0.1054	1.77	20	
Barium	0.1949	0.0050	0.1	0.09689	98	75-125	0.1957	0.451	20	
Beryllium	0.1	0.0020	0.1	0.0000077	100	75-125	0.1026	2.51	20	
Boron	0.8104	0.020	0.5	0.2965	103	75-125	0.8189	1.05	20	
Cadmium	0.09753	0.0020	0.1	0	97.5	75-125	0.09819	0.67	20	
Chromium	0.1014	0.0050	0.1	0.0008184	101	75-125	0.1045	3.01	20	
Copper	0.1001	0.0050	0.1	0.0004356	99.6	75-125	0.1013	1.21	20	
Lead	0.09688	0.0050	0.1	-0.001705	98.6	75-125	0.09861	1.77	20	
Nickel	0.1003	0.0050	0.1	0.002687	97.6	75-125	0.1016	1.28	20	
Selenium	0.09595	0.0050	0.1	0.0003124	95.6	75-125	0.09838	2.5	20	
Silver	0.07698	0.0050	0.1	0.0000044	77	75-125	0.07876	2.29	20	
Thallium	0.09849	0.0050	0.1	-0.0000099	98.5	75-125	0.0994	0.926	20	
Zinc	0.1114	0.010	0.1	0.00695	104	75-125	0.3072	93.5	20	BR

The following samples were analyzed in this batch:

22051511-01D	22051511-02D	22051511-03D
22051511-04D	22051511-05D	22051511-06D
22051511-07D	22051511-08D	22051511-09D
22051511-10D	22051511-11D	22051511-12D
22051511-14D		

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 196748	Instrument ID ICPMS3		MEHIO	d: SW60 2	ZUD						
MBLK	Sample ID: MBLK-196748-1967	48			L	Jnits: mg/ l	L	Analysi	s Date: 5/2	3/2022 07	:44 PN
Client ID:	Run I	D: ICPMS	3_220523A		Se	qNo: 844 7	7320	Prep Date: 5/2	3/2022	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
-trialyte		I QL	OI IT VAI			701 1 LC			701 NI D		Que
Antimony	ND	0.0050									
Arsenic	ND	0.0050									
Barium	0.002898	0.0050									J
Beryllium	ND	0.0020									
Boron	ND	0.020									
Cadmium	ND	0.0020									
Chromium	ND	0.0050									
Copper	ND	0.0050									
Lead	ND	0.0050									
Nickel	ND	0.0050									
Selenium	ND	0.0050									
Silver	ND	0.0050									
Thallium	ND	0.0050									
Zinc	0.01099	0.010									
LCS	Sample ID: LCS-196748-196748	Sample ID: LCS-196748-196748				Jnits: mg/ l	L	Analysis	s Date: 5/2	3/2022 07	:45 PM
Client ID:	Run I	D: ICPMS	3_220523A		Se	qNo: 844 7	7321	Prep Date: 5/2	3/2022	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Antimony	0.09741	0.0050	0.1		0	97.4	80-120	0)		
Arsenic	0.09556	0.0050	0.1		0	95.6	80-120	0			
Barium	0.103	0.0050	0.1		0	103	80-120	0			
Beryllium	0.0854	0.0020	0.1		0	85.4	80-120	0			
Boron	0.4301	0.020	0.5		0	86	80-120	0			
Cadmium	0.09751	0.0020	0.1		0	97.5	80-120	0			
Chromium	0.09906	0.0050	0.1		0	99.1	80-120	0)		
Copper	0.09985	0.0050	0.1		0	99.8	80-120	0)		
Lead	0.09759	0.0050	0.1		0	97.6	80-120	0)		
Nickel	0.09808	0.0050	0.1		0	98.1	80-120	0			
Selenium	0.09474	0.0050	0.1		0	94.7	80-120	0			
Thallium	0.09862	0.0050	0.1		0	98.6	80-120	0)		
_CS	Sample ID: LCS-196748-196748				L	Jnits: mg/ l	L	Analysi	s Date: 5/2	4/2022 01	:30 PN
Client ID:			3_220524A			qNo: 845 (Prep Date: 5/2		DF: 1	
				SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qua
Silver	0.08265	0.0050	0.1		0	82.7	80-120	0)		
Zinc	0.1515	0.010	0.1		0	152	80-120	0			BS

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 196748	Instrument ID ICPMS3	Method:	SW6020B
------------------	----------------------	---------	---------

MS	Sample ID: 22051619-01DMS				Units: mg/	L	Analysi	s Date: 5/2	3/2022 08:	08 PM
Client ID:	Run I	D: ICPMS	3_220523A	S	eqNo: 844	7337	Prep Date: 5/2	3/2022	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony	0.09952	0.0050	0.1	0.0001243	99.4	75-125	()		
Arsenic	0.09918	0.0050	0.1	0.00022	99	75-125	()		
Barium	0.1071	0.0050	0.1	0.006629	100	75-125	()		
Beryllium	0.1028	0.0020	0.1	0.0000385	103	75-125	()		
Boron	0.5347	0.020	0.5	0.01715	104	75-125	()		
Cadmium	0.09892	0.0020	0.1	0.0000627	98.9	75-125	()		
Chromium	0.1012	0.0050	0.1	0.0006479	101	75-125	()		
Copper	0.105	0.0050	0.1	0.003431	102	75-125	()		
Lead	0.09815	0.0050	0.1	-0.001822	100	75-125	()		
Nickel	0.1013	0.0050	0.1	0.0006347	101	75-125	()		
Selenium	0.09717	0.0050	0.1	0.0002321	96.9	75-125	()		
Silver	0.08028	0.0050	0.1	0	80.3	75-125	()		
Thallium	0.09935	0.0050	0.1	-0.000011	99.4	75-125	()		
Zinc	0.1036	0.010	0.1	0.001426	102	75-125	()		В

MSD	Sample ID: 22051619-01DMSD	Sample ID: 22051619-01DMSD					Analysis Date: 5/23/2022 08:10 F			
Client ID:	Run I	D: ICPMS	3_220523A		SeqNo: 84 4	17338	Prep Date: 5/23	/2022	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony	0.1009	0.0050	0.1	0.000124	43 101	75-125	0.09952	1.39	20	
Arsenic	0.1016	0.0050	0.1	0.0002	22 101	75-125	0.09918	2.45	20	
Barium	0.1094	0.0050	0.1	0.00662	29 103	75-125	0.1071	2.11	20	
Beryllium	0.1032	0.0020	0.1	0.000038	35 103	75-125	0.1028	0.36	20	
Boron	0.5448	0.020	0.5	0.017	15 106	75-125	0.5347	1.87	20	
Cadmium	0.09995	0.0020	0.1	0.000062	27 99.9	75-125	0.09892	1.04	20	
Chromium	0.1036	0.0050	0.1	0.000647	79 103	75-125	0.1012	2.28	20	
Copper	0.1073	0.0050	0.1	0.00343	31 104	75-125	0.105	2.09	20	
Lead	0.09979	0.0050	0.1	-0.00182	22 102	75-125	0.09815	1.66	20	
Nickel	0.1042	0.0050	0.1	0.000634	47 104	75-125	0.1013	2.78	20	
Selenium	0.09535	0.0050	0.1	0.000232	21 95.1	75-125	0.09717	1.89	20	
Silver	0.08128	0.0050	0.1		0 81.3	75-125	0.08028	1.24	20	
Thallium	0.1005	0.0050	0.1	-0.0000	11 100	75-125	0.09935	1.11	20	
Zinc	0.1055	0.010	0.1	0.00142	26 104	75-125	0.1036	1.75	20	В

The following samples were analyzed in this batch:

22051511-16D

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 196876	Instrument ID ICPMS3	Method: SW6	3020B
------------------	----------------------	-------------	-------

MBLK	Sample ID: MBLK-196876-19687	6			Units: mg/	L	Analysis Date: 5/25/2022 03:22 PM				
Client ID:	Run II	: ICPMS	3_220525A		SeqNo: 8455596		Prep Date: 5/25/2022		DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Aluminum	ND	0.010									
Antimony	ND	0.0050									
Arsenic	ND	0.0050									
Barium	ND	0.0050									
Beryllium	ND	0.0020									
Boron	ND	0.020									
Cadmium	ND	0.0020									
Chromium	ND	0.0050									
Copper	ND	0.0050									
Lead	ND	0.0050									
Nickel	ND	0.0050									
Selenium	ND	0.0050									
Silver	ND	0.0050									
Thallium	ND	0.0050									
Zinc	ND	0.010									

LCS	Sample ID: LCS-196876-19687	Sample ID: LCS-196876-196876					L	Analysis Date: 5/25/2022 03:24 PM			
Client ID:	Run	ID: ICPMS	3_220525A		SeqNo: 8455599			Prep Date: 5/25/2022		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum Antimony	0.09965 0.1001	0.010 0.0050	0.1 0.1		0	99.6 100	80-120 80-120				
Arsenic	0.09536	0.0050	0.1		0	95.4	80-120				
Barium	0.09923	0.0050	0.1		0	99.2	80-120	0			
Beryllium	0.1008	0.0020	0.1		0	101	80-120	0			
Boron	0.5255	0.020	0.5		0	105	80-120	0			
Cadmium	0.09979	0.0020	0.1		0	99.8	80-120	0			
Chromium	0.101	0.0050	0.1		0	101	80-120	0			
Copper	0.1065	0.0050	0.1		0	107	80-120	0			
Lead	0.09802	0.0050	0.1		0	98	80-120	0			
Nickel	0.1035	0.0050	0.1		0	104	80-120	0			
Selenium	0.09328	0.0050	0.1		0	93.3	80-120	0			
Silver	0.09466	0.0050	0.1		0	94.7	80-120	0			
Thallium	0.09612	0.0050	0.1		0	96.1	80-120	0			
Zinc	0.1063	0.010	0.1		0	106	80-120	0			

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 196876	Instrument ID ICPMS3	Method:	SW6020B
------------------	----------------------	---------	---------

MS	Sample ID: 22051619-03DMS				Units: mg/	L	Analysis Date: 5/25/2022 05:16 PM			
Client ID:	Run I	D: ICPMS	3_220525A		SeqNo: 845 8	3411	Prep Date: 5/25/2022		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum	0.3377	0.010	0.1	0.2359	9 102	75-125	C)		
Antimony	0.1052	0.0050	0.1	0.000089	1 105	75-125	C)		
Arsenic	0.0944	0.0050	0.1	0.0002442	94.2	75-125	C)		
Barium	0.1159	0.0050	0.1	0.0148	3 101	75-125	C)		
Beryllium	0.1016	0.0020	0.1	0.0000363	3 102	75-125	C)		
Boron	0.5462	0.020	0.5	0.01397	7 106	75-125	C)		
Cadmium	0.1046	0.0020	0.1	0.0000682	2 105	75-125	C)		
Chromium	0.09977	0.0050	0.1	0.001273	3 98.5	75-125	C)		
Copper	0.1062	0.0050	0.1	0.0014	5 105	75-125	C)		
Lead	0.09816	0.0050	0.1	0.0002233	3 97.9	75-125	C)		
Nickel	0.1021	0.0050	0.1	0.0006545	5 101	75-125	C)		
Selenium	0.09335	0.0050	0.1	0.0000979	93.3	75-125	C)		
Silver	0.09725	0.0050	0.1	0.0000033	3 97.2	75-125	C)		
Thallium	0.09541	0.0050	0.1	0.000008	3 95.4	75-125	C)		
Zinc	0.1045	0.010	0.1	0.00126	1 103	75-125	C)		

MSD	Sample ID: 22051619-03DMSD	Sample ID: 22051619-03DMSD					L	Analysis Date: 5/25/2022 05:18 PM			
Client ID:	Run I	D: ICPMS	3_220525A		Seq	No: 845 8	3412	Prep Date: 5/25	/2022	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum	0.3542	0.010	0.1	0.23	59	118	75-125	0.3377	4.78	20	
Antimony	0.104	0.0050	0.1	0.00008	91	104	75-125	0.1052	1.14	20	
Arsenic	0.09267	0.0050	0.1	0.00024	42	92.4	75-125	0.0944	1.85	20	
Barium	0.1149	0.0050	0.1	0.01	48	100	75-125	0.1159	0.845	20	
Beryllium	0.1002	0.0020	0.1	0.00003	63	100	75-125	0.1016	1.35	20	
Boron	0.5453	0.020	0.5	0.013	97	106	75-125	0.5462	0.148	20	
Cadmium	0.1038	0.0020	0.1	0.00006	82	104	75-125	0.1046	0.806	20	
Chromium	0.09907	0.0050	0.1	0.0012	73	97.8	75-125	0.09977	0.698	20	
Copper	0.1039	0.0050	0.1	0.001	45	102	75-125	0.1062	2.13	20	
Lead	0.09721	0.0050	0.1	0.00022	33	97	75-125	0.09816	0.966	20	
Nickel	0.1001	0.0050	0.1	0.00065	45	99.4	75-125	0.1021	1.99	20	
Selenium	0.09347	0.0050	0.1	0.00009	79	93.4	75-125	0.09335	0.13	20	
Silver	0.09611	0.0050	0.1	0.00000	33	96.1	75-125	0.09725	1.18	20	
Thallium	0.09397	0.0050	0.1	0.00000	88	94	75-125	0.09541	1.52	20	
Zinc	0.1089	0.010	0.1	0.0012	61	108	75-125	0.1045	4.11	20	

The following samples were analyzed in this batch:

22051511-02D	22051511-04D	22051511-06D	
22051511-07D	22051511-10D	22051511-11D	
22051511-14D			

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 197094	Instrument ID ICPMS3		Method	: SW602	20B						
MBLK	Sample ID: MBLK-197094-1970	94			Units: mg/	′L	Analysis Date: 5/31/2022 03:47 PM				
Client ID:	Run I	D: ICPMS	3_220531A		SeqNo: 847	1604	Prep Date: 5/29/2022 DF: 1				
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua	
inalyte	Result	FQL	SFR Vai		70REC			70KPD		Qua	
luminum	ND	0.010									
ntimony	ND	0.0050									
rsenic	ND	0.0050									
arium	ND	0.0050									
eryllium	ND	0.0020									
admium	ND	0.0020									
hromium	ND	0.0050									
opper	ND	0.0050									
ead	ND	0.0050									
lickel	ND	0.0050									
elenium	ND	0.0050								-	
ilver	ND	0.0050									
hallium	ND	0.0050									
linc	ND	0.010									
IBLK	Sample ID: MBLK-197094-1970	Units: mg/	′L	Analysi	s Date: 6/1	/2022 12:2	2022 12:20 PM				
lient ID:	Run I	Run ID: ICPMS3_220601A			SeqNo: 847	4214	Prep Date: 5/2	9/2022	DF: 1		
				SPK Ref		Control	RPD Ref		RPD		
nalyte	Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qua	
oron	ND	0.020									
.cs	Sample ID: LCS-197094-197094				Units: mg/	L	Analysi	31/2022 03:48 PN			
Client ID:	Run I	D: ICPMS	3_220531A		SeqNo: 847	1605	Prep Date: 5/2	9/2022	DF: 1		
nalyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua	
luminum	0.1029	0.010	0.1		0 103	80-120	()			
ntimony	0.09689	0.0050	0.1		0 96.9	80-120	()			
rsenic	0.09534	0.0050	0.1		0 95.3	80-120	()			
arium	0.09894	0.0050	0.1		0 98.9	80-120	()			
eryllium	0.09581	0.0020	0.1		0 95.8	80-120	(
admium	0.0992	0.0020	0.1		0 99.2	80-120	()			
hromium	0.1019	0.0050	0.1		0 102	80-120	(
opper	0.1075	0.0050	0.1		0 108	80-120	(
ead	0.09724	0.0050	0.1		0 97.2	80-120	(
	0.1026	0.0050	0.1		0 103	80-120	(
ickel		0.000	V. 1			80-120	(
		0.0050	0.1		() X9 /						
elenium	0.08974	0.0050 0.0050	0.1 0.1		0 89.7 0 95						
lickel elenium ilver hallium		0.0050 0.0050 0.0050	0.1 0.1 0.1		0 89.7 0 95 0 94.6	80-120 80-120	()			

Note:

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 197094	Instrument ID ICPMS3		Method	d: SW6020)B							
LCS	Sample ID: LCS-197094-197094				Units: n	ng/L	Analysis	Analysis Date: 6/1/2022 12:22 PM				
Client ID:	Run I	D: ICPMS	3_220601A		SeqNo: 8	474215	Prep Date: 5/29	9/2022	DF: 1			
Analyte	Result	PQL	SPK Val	SPK Ref Value	%RE	Control C Limit	RPD Ref Value	%RPD	RPD Limit	Qua		
Boron	0.5048	0.020	0.5	(0 10	1 80-120	0					
MS	Sample ID: 22051853-09DMS				Units: m	ng/L	Analysis	Date: 5/3	1/2022 05	:38 PM		
Client ID:	Run I	D: ICPMS	3_220531A		SeqNo: 8	472567	Prep Date: 5/29	9/2022	DF: 1			
Analyte	Result	PQL	SPK Val	SPK Ref Value	%RE	Control C Limit	RPD Ref Value	%RPD	RPD Limit	Qua		
Aluminum	3.168	0.010	0.1	2.15	3 101	0 75-125	5 0			SEC		
Antimony	0.09893	0.0050	0.1	0.0000319	9 98.	9 75-125	0					
Arsenic	0.09945	0.0050	0.1	0.001066	6 98.	4 75-125	0					
Barium	0.2846	0.0050	0.1	0.1854	4 99.	2 75-125	5 0					
Beryllium	0.09961	0.0020	0.1	0.0001166	6 99.	5 75-125	0					
Cadmium	0.09942	0.0020	0.1	0.00003	3 99.	4 75-125	0					
Chromium	0.104	0.0050	0.1	0.003516	6 10	0 75-125	0					
Copper	0.1128	0.0050	0.1	0.008994	4 10	4 75-125	0					
Lead	0.101	0.0050	0.1	0.001884	4 99.	2 75-125	0					
Nickel	0.104	0.0050	0.1	0.002879	9 10	1 75-125	0					
Selenium	0.09213	0.0050	0.1	0.0000924	4 9	2 75-125	0					
Silver	0.09291	0.0050	0.1	0.0000132	2 92.	9 75-125	0					
Thallium	0.09726	0.0050	0.1	0.000008	8 97.	3 75-125	0					
Zinc	0.1137	0.010	0.1	0.01402	2 99.	75-125	0					
MS	Sample ID: 22051853-09DMS				Units: m	ng/L	Analysis	Date: 6/1	/2022 12:2	25 PM		
Client ID:	Run I	D: ICPMS	3_220601A		SeqNo: 8	474217	Prep Date: 5/29	9/2022	DF: 1			
Analyte	Result	PQL	SPK Val	SPK Ref Value	%RE	Control C Limit	RPD Ref Value	%RPD	RPD Limit	Qua		
Boron	0.5844	0.020	0.5	0.07552	2 10	2 75-125	5 0					

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 197094 Instrument ID ICPMS3 Method: SW6020B

MSD	Sample ID: 22051853-09DMSD			ι	Jnits: mg/	L	Analysis Date: 5/31/2022 05:40 PM			
Client ID:	Run I	Run ID: ICPMS3_220531A			SeqNo: 8472568			/2022	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum	3.157	0.010	0.1	2.153	1000	75-125	3.168	0.352	20	SEO
Antimony	0.09732	0.0050	0.1	0.0000319	97.3	75-125	0.09893	1.64	20	
Arsenic	0.09934	0.0050	0.1	0.001066	98.3	75-125	0.09945	0.11	20	
Barium	0.2862	0.0050	0.1	0.1854	101	75-125	0.2846	0.555	20	
Beryllium	0.1012	0.0020	0.1	0.0001166	101	75-125	0.09961	1.61	20	
Cadmium	0.09833	0.0020	0.1	0.000033	98.3	75-125	0.09942	1.11	20	
Chromium	0.1047	0.0050	0.1	0.003516	101	75-125	0.104	0.656	20	
Copper	0.1123	0.0050	0.1	0.008994	103	75-125	0.1128	0.428	20	
Lead	0.0999	0.0050	0.1	0.001884	98	75-125	0.101	1.14	20	
Nickel	0.1027	0.0050	0.1	0.002879	99.9	75-125	0.104	1.18	20	
Selenium	0.09594	0.0050	0.1	0.0000924	95.9	75-125	0.09213	4.05	20	
Silver	0.09221	0.0050	0.1	0.0000132	92.2	75-125	0.09291	0.759	20	
Thallium	0.09764	0.0050	0.1	0.0000088	97.6	75-125	0.09726	0.389	20	
Zinc	0.1153	0.010	0.1	0.01402	101	75-125	0.1137	1.38	20	

MSD	Sample ID: 22051853-09		Units: mg/	'L	Analysis Date: 6/1/2022 12:27 PM						
Client ID:		Run ID: ICPMS3_220601A				SeqNo: 847	4218	Prep Date: 5/29	DF: 1		
Analyte	F	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Boron	0	.5812	0.020	0.5	0.0755	52 101	75-125	0.5844	0.549	20	

The following samples were analyzed in this batch:

22051511-16D

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 196606 Instrument ID LCMS1 Method: E537 Mod

MBLK San	nple ID: MBLK-1	96606-196606	6			Units: ng/	L	Analys	is Date: 5/2	24/2022 11:52 AM	
Client ID:		Run ID	: LCMS1	_220523C		SeqNo: 84	0642	Prep Date: 5/2	20/2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Allalyte		rtesuit	I QL	OI IX Vai		701 \L O			701 N D		Quu
Fluorotelomer Sulphonic A	cid 4:2 (FtS	ND	5.0								
Fluorotelomer Sulphonic A	cid 6:2 (FtS	ND	5.0								
Fluorotelomer Sulphonic A	cid 8:2 (FtS	ND	5.0								
Perfluorobutanesulfonic A	cid (PFBS)	ND	5.0								
Perfluorobutanoic Acid (Pf	FBA)	ND	5.0								
Perfluorodecanesulfonic A	cid (PFDS)	ND	5.0								
Perfluorodecanoic Acid (P	FDA)	ND	5.0								
Perfluorododecanoic Acid	(PFDoA)	ND	5.0								
Perfluoroheptanesulfonic A	Acid (PFHpS	ND	5.0								
Perfluoroheptanoic Acid (F		ND	5.0								
Perfluorohexanesulfonic A	cid (PFHxS)	ND	5.0								
Perfluorohexanoic Acid (P	FHxA)	ND	5.0								
Perfluorononanesulfonic A	cid (PFNS)	ND	5.0								
Perfluorononanoic Acid (P	FNA)	ND	5.0								
Perfluorooctanesulfonamic	le (PFOSA)	ND	5.0								
Perfluorooctanesulfonic Ad	cid (PFOS)	ND	2.0								
Perfluorooctanoic Acid (PF	OA)	ND	2.0								
Perfluoropentanesulfonic A	Acid (PFPeS	ND	5.0								
Perfluoropentanoic Acid (F	PFPeA)	ND	5.0								
Perfluorotetradecanoic Aci	d (PFTeA)	ND	5.0								
Perfluorotridecanoic Acid (PFTriA)	ND	5.0								
Perfluoroundecanoic Acid	(PFUnA)	ND	5.0								
N-Ethylperfluorooctanesul	onamidoace	ND	5.0								
N-Methylperfluorooctanes	ulfonamidoa	0.6528	5.0								J
Hexafluoropropylene oxide	dimer acid	ND	5.0								
4,8-Dioxa-3H-perfluoronor	anoic Acid (ND	5.0								
11CI-Pf3OUdS		ND	5.0								
9CI-PF3ONS		ND	5.0								
Surr: 13C2-FtS 4:2		123.3	0	149.4		0 82.5	50-150	(0		
Surr: 13C2-FtS 6:2		150.7	0	152		0 99.2	50-150	(0		
Surr: 13C2-FtS 8:2		144.3	0	153.3		0 94.2	50-150	(0		
Surr: 13C2-PFDA		138.9	0	160		0 86.8	50-150	(0		
Surr: 13C2-PFDoA		141.8	0	160		0 88.6	50-150	()		
Surr: 13C2-PFHxA		133.1	0	160		0 83.2	50-150	(0		
Surr: 13C2-PFTeA		144.7	0	160		0 90.5	50-150	(0		
Surr: 13C2-PFUnA		143.5	0	160		0 89.7	50-150	(0		
Surr: 13C3-HFPO-DA		131.4	0	160		0 82.1	50-150	()		
Surr: 13C3-PFBS		136.1	0	148.8		0 91.4	50-150	(0		
Surr: 13C4-PFBA		142.1	0	160		0 88.8	50-150	(0		
Surr: 13C4-PFHpA		143.9	0	160		0 90	50-150	(0		
Surr: 13C4-PFOA		134.9	0	160		0 84.3	50-150	(0		
Surr: 13C4-PFOS		134.2	0	152.8		0 87.8	50-150)		

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 196606	Instrument ID LCMS1		Method	E537 Mod			
Surr: 13C5-PFNA	156.2	0	160	0	97.6	50-150	0
Surr: 13C5-PFPeA	147.3	0	160	0	92.1	50-150	0
Surr: 1802-PFHxS	156.1	0	151.2	0	103	50-150	0
Surr: d5-N-EtFOSAA	150.8	0	160	0	94.2	50-150	0
Surr: d3-N-MeFOSAA	140.4	0	160	0	87.8	50-150	0

Note:

See Qualifiers Page for a list of Qualifiers and their explanation.

QC Page: 13 of 45

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 196606 Instrument ID LCMS1 Method: E537 Mod

LCS	Sample ID: LCS-196	6606-196606				L	Jnits: ng/L	-	Analysis	s Date: 5/2	4/2022 07	:17 AM
Client ID:		Run ID	: LCMS1	_220523C		Se	qNo: 845 (0612	Prep Date: 5/20	0/2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
	phonic Acid 4:2 (FtS	37.6	5.0	29.9		0	126	63-143	0			
	phonic Acid 4:2 (FtS	40.82	5.0	30.3		0	135	63-162				
	phonic Acid 8:2 (FtS	28.09	5.0	30.7		0	91.5	61-165				
Perfluorobutanesul	`	36	5.0	28.3		0	127	72-130	0			
Perfluorobutanoic A	,	39.86	5.0	32		0	125	73-129	0			
Perfluorodecanesu	,	38.9	5.0	30.8		0	126	53-142				
Perfluorodecanoic		37.05	5.0	32		0	116	71-129				
Perfluorododecano		32.35	5.0	32		0	101	72-134	0			
	ulfonic Acid (PFHpS	36.48	5.0	30.5		0	120	69-134	0			
Perfluoroheptanoic	` '	40.93	5.0	32		0	128	72-130	0			
	Ilfonic Acid (PFHxS)	35.38	5.0	29.1		0	122	68-131	0			
Perfluorohexanoic	,	34.2	5.0	32		0	107	72-129				
	Ilfonic Acid (PFNS)	32.62	5.0	30.7		0	106	69-127	0			
Perfluorononanoic	,	29.36	5.0	32		0	91.8	69-130	0			
	fonamide (PFOSA)	35.51	5.0	32		0	111	67-137	0			
Perfluorooctanesul	, ,	30.46	2.0	29.7		0	103	65-140	0			
Perfluorooctanoic A	, ,	34.79	2.0	32		0	109	71-133				
	ulfonic Acid (PFPeS	37.51	5.0	30		0	125	71-127	0			
Perfluoropentanoic	,	38.23	5.0	32		0	119	72-129	0			
Perfluorotetradecai	, ,	37.75	5.0	32		0	118	71-132				
Perfluorotridecanoi	,	40.34	5.0	32		0	126	65-144	0			
Perfluoroundecano	, ,	30.34	5.0	32		0	94.8	69-133				
	tanesulfonamidoace	42.07	5.0	32		0	131	61-135				
	octanesulfonamidoa	36.06	5.0	32		0	113	65-136	0			
	ne oxide dimer acid	38.55	5.0	32		0	120	70-130	0			
	uorononanoic Acid (29.44	5.0	30.1		0	97.8	70-130	0			
9CI-PF3ONS	,	37.6	5.0	29.8		0	126	70-130				
Surr: 13C2-FtS	4:2	107.6	0	149.4		0	72	50-150	0			
Surr: 13C2-FtS (6:2	103.6	0	152		0	68.2	50-150	0			
Surr: 13C2-FtS 8	8:2	131.8	0	153.3		0	86	50-150	0			
Surr: 13C2-PFD		128.2	0	160		0	80.1	50-150	0			
Surr: 13C2-PFD	oΑ	112.4	0	160		0	70.2	50-150	0			
Surr: 13C2-PFH		144.1	0	160		0	90.1	50-150				
Surr: 13C2-PFT		129.2	0	160		0	80.8	50-150				
Surr: 13C2-PFU		166.5	0	160		0	104	50-150				
Surr: 13C3-HFP		114.7	0	160		0	71.7	50-150				
Surr: 13C3-PFB		119.9	0	148.8		0	80.6	50-150				
Surr: 13C4-PFB		135.7	0	160		0	84.8	50-150				
Surr: 13C4-PFH		129.3	0	160		0	80.8	50-150				
Surr: 13C4-PF0	•	156.3	0	160		0	97.7	50-150				
Surr: 13C4-PFO		121.5	0	152.8		0	79.5	50-150				
Surr: 13C5-PFN		140.2	0	160		0	87.6	50-150				

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 196606	Instrument ID LCMS1		Method	E537 Mod			
Surr: 13C5-PFPeA	122.5	0	160	0	76.5	50-150	0
Surr: 13C8-FOSA	103.6	0	160	0	64.7	50-150	0
Surr: 1802-PFHxS	114.6	0	151.2	0	75.8	50-150	0
Surr: d5-N-EtFOSAA	125.6	0	160	0	78.5	50-150	0
Surr: d3-N-MeFOSAA	100.9	0	160	0	63	50-150	0

LCS	Sample ID: LCS-196606	5-196606				U	Inits: ng/L		Analy	sis Date: 5/2	5/2022 03:	09 AM
Client ID:		Run ID:	LCMS1	_220524B		Sec	qNo: 845 4	1692	Prep Date: 5	/20/2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
11CI-Pf3OUdS		30.76	5.0	30.1		0	102	70-130		0		

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 196606 Instrument ID LCMS1 Method: E537 Mod

MS	Sample ID: 2205150	01-01AMS				Units: ng/L	-	Analysis	Date: 5/2	4/2022 09	:22 AM
Client ID:		Run ID	: LCMS1	_220523C	S	eqNo: 845 0	0626	Prep Date: 5/20)/2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Fluorotelomer Suli	phonic Acid 4:2 (FtS	32.99	5.1	30.46	0.03274	108	63-143	0			
	phonic Acid 4:2 (FtS	36.59	5.1	30.40	1.201	115	63-162	0			
·	phonic Acid 8:2 (FtS	46.77	5.1	31.28	1.483	145	61-165	0			
	Ilfonic Acid (PFBS)	38.49	5.1	28.83	2.252	126	72-130	0			
Perfluorobutanoic	` ,	52.29	5.1	32.6	3.306	150	73-129	0			S
	ulfonic Acid (PFDS)	34.52	5.1	31.38	0.000	110	53-142	0			J
Perfluorodecanoic	,	38.11	5.1	32.6	-0.7071	119	71-129	0			
Perfluorododecand	, ,	34.89	5.1	32.6	0.1015	107	72-134	0			
	sulfonic Acid (PFHpS	42.26	5.1	31.07	1.526	131	69-134	0			
Perfluoroheptanoio	` '	42.68	5.1	32.6	3.509	120	72-130	0			
· · · · · · · · · · · · · · · · · · ·	ulfonic Acid (PFHxS)	35.8	5.1	29.65	1.192	117	68-131	0			
Perfluorohexanoic	,	41.19	5.1	32.6	5.798	109	72-129	0			
	ulfonic Acid (PFNS)	32.11	5.1	31.28	000	103	69-127	0			
Perfluorononanoic	,	35.21	5.1	32.6	0.5402	106	69-130	0			
	Ilfonamide (PFOSA)	39.33	5.1	32.6	0.3012	120	67-137	0			
	Ilfonic Acid (PFOS)	36.07	2.0	30.26	2.874	110	65-140	0			
Perfluorooctanoic	, ,	48.6	2.0	32.6	8.112	124	71-133	0			
	sulfonic Acid (PFPeS	40.42	5.1	30.56	0.1899	132	71-127	0			S
Perfluoropentanoio	•	46.35	5.1	32.6	6.786	121	72-129	0			
•	anoic Acid (PFTeA)	37.43	5.1	32.6	0.2259	114	71-132	0			
Perfluorotridecano	, ,	31.08	5.1	32.6	0.1179	95	65-144	0			
Perfluoroundecand	,	38.26	5.1	32.6	-0.7399	120	69-133	0			
	ctanesulfonamidoace	36.05	5.1	32.6	0.1244	110	61-135	0			
	octanesulfonamidoa	42.81	5.1	32.6	0.6155	129	65-136	0			
	ne oxide dimer acid	39.15	5.1	32.6	0.1637	120	70-130	0			
	luorononanoic Acid (37.69	5.1	30.66	0.03274	123	70-130	0			
11CI-Pf3OUdS	,	31.12	5.1	30.66	0.02292	101	70-130	0			
9CI-PF3ONS		31.12	5.1	30.36	0.03274	102	70-130	0			
Surr: 13C2-FtS	4:2	145.3	0	152.2	0	95.4	50-150	0			
Surr: 13C2-FtS	6:2	150.8	0	154.8	0	97.4	50-150	0			
Surr: 13C2-FtS	8:2	183.3	0	156.2	0	117	50-150	0			
Surr: 13C2-PFD		153.6	0	163	0	94.2	50-150	0			
Surr: 13C2-PFD	DoA	133.6	0	163	0	81.9	50-150				
Surr: 13C2-PFH		147.2	0	163	0	90.3	50-150				
Surr: 13C2-PFT		149	0	163	0	91.4	50-150				
Surr: 13C2-PFU		140.1	0	163	0	85.9	50-150				
Surr: 13C3-HFF		150.7	0	163	0	92.4	50-150				
Surr: 13C3-PFB		124.9	0	151.6	0	82.4	50-150				
Surr: 13C4-PFB		135.8	0	163	0	83.3	50-150				
Surr: 13C4-PFH		124.6	0	163	0	76.5	50-150				
Surr: 13C4-PFC	•	132.7	0	163	0	81.4	50-150				
Surr: 13C4-PFC		139	0	155.7	0	89.3	50-150				

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 196606	Instrument ID LCMS1		Method:	E537 Mod			
Surr: 13C5-PFNA	132.9	0	163	0	81.5	50-150	0
Surr: 13C5-PFPeA	133.5	0	163	0	81.9	50-150	0
Surr: 13C8-FOSA	119.3	0	163	0	73.2	50-150	0
Surr: 1802-PFHxS	117.2	0	154	0	76.1	50-150	0
Surr: d5-N-EtFOSAA	144.5	0	163	0	88.7	50-150	0
Surr: d3-N-MeFOSAA	151.4	0	163	0	92.9	50-150	0

Note:

See Qualifiers Page for a list of Qualifiers and their explanation.

QC Page: 17 of 45

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 196606 Instrument ID LCMS1 Method: E537 Mod

MSD Sample ID: 22	2051501-01AMSD				Units: ng/L	-	Analysis	Date: 5/24	24/2022 09:30 AM		
Client ID:	Run ID	: LCMS1	_220523C	Se	eqNo: 845 (0627	Prep Date: 5/20	/2022	DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua	
•	25.00										
Fluorotelomer Sulphonic Acid 4:2 (F		5.1	30.32	0.03274	118	63-143	32.99	8.53	30		
Fluorotelomer Sulphonic Acid 6:2 (F		5.1	30.72	1.201	115	63-162	36.59	0.0751	30		
Fluorotelomer Sulphonic Acid 8:2 (F		5.1	31.13	1.483	127	61-165	46.77	13.1	30		
Perfluorobutanesulfonic Acid (PFBS)	,	5.1	28.69	2.252	114	72-130	38.49	9.59	30		
Perfluorobutanoic Acid (PFBA)	44.11	5.1	32.45	3.306	126	73-129	52.29	17	30		
Perfluorodecanesulfonic Acid (PFDS	,	5.1	31.23	0	111	53-142	34.52	0.782	30		
Perfluorodecanoic Acid (PFDA)	37.16	5.1	32.45	-0.7071	117	71-129	38.11	2.52	30		
Perfluorododecanoic Acid (PFDoA)	31.39	5.1	32.45	0.1015	96.4	72-134	34.89	10.6	30		
Perfluoroheptanesulfonic Acid (PFH _I		5.1	30.92	1.526	105	69-134	42.26	21.8	30		
Perfluoroheptanoic Acid (PFHpA)	43.12	5.1	32.45	3.509	122	72-130	42.68	1.03	30		
Perfluorohexanesulfonic Acid (PFHx	,	5.1	29.5	1.192	116	68-131	35.8	1.44	30		
Perfluorohexanoic Acid (PFHxA)	38.79	5.1	32.45	5.798	102	72-129	41.19	6.01	30		
Perfluorononanesulfonic Acid (PFNS	37.18	5.1	31.13	0	119	69-127	32.11	14.6	30		
Perfluorononanoic Acid (PFNA)	34.08	5.1	32.45	0.5402	103	69-130	35.21	3.27	30		
Perfluorooctanesulfonamide (PFOSA	A) 39.94	5.1	32.45	0.3012	122	67-137	39.33	1.53	30		
Perfluorooctanesulfonic Acid (PFOS) 34.06	2.0	30.11	2.874	104	65-140	36.07	5.74	30		
Perfluorooctanoic Acid (PFOA)	44.66	2.0	32.45	8.112	113	71-133	48.6	8.44	30		
Perfluoropentanesulfonic Acid (PFPe	eS 28.75	5.1	30.42	0.1899	93.9	71-127	40.42	33.7	30	R	
Perfluoropentanoic Acid (PFPeA)	44.37	5.1	32.45	6.786	116	72-129	46.35	4.38	30		
Perfluorotetradecanoic Acid (PFTeA) 33.63	5.1	32.45	0.2259	103	71-132	37.43	10.7	30		
Perfluorotridecanoic Acid (PFTriA)	34.82	5.1	32.45	0.1179	107	65-144	31.08	11.3	30		
Perfluoroundecanoic Acid (PFUnA)	36.31	5.1	32.45	-0.7399	114	69-133	38.26	5.22	30		
N-Ethylperfluorooctanesulfonamidoa	ас∈ 37	5.1	32.45	0.1244	114	61-135	36.05	2.59	30		
N-Methylperfluorooctanesulfonamido	oa 37.81	5.1	32.45	0.6155	115	65-136	42.81	12.4	30		
Hexafluoropropylene oxide dimer ac	id 35.54	5.1	32.45	0.1637	109	70-130	39.15	9.65	30		
4,8-Dioxa-3H-perfluorononanoic Acid		5.1	30.52	0.03274	103	70-130	37.69	17.9	30		
11CI-Pf3OUdS	29.44	5.1	30.52	0.02292	96.4	70-130	31.12	5.57	30		
9CI-PF3ONS	30.8	5.1	30.21	0.03274	102	70-130	31.12	1.03	30		
Surr: 13C2-FtS 4:2	125.9	0	151.5	0	83.1	50-150		14.3	30		
Surr: 13C2-FtS 6:2	150.1	0	154.1	0	97.4	50-150		0.467	30		
Surr: 13C2-FtS 8:2	194.9	0	155.4	0	125	50-150		6.14	30		
Surr: 13C2-PFDA	139.8	0	162.2	0	86.2	50-150		9.39	30		
Surr: 13C2-PFDoA	124.7	0	162.2	0	76.9	50-150		6.85	30		
Surr: 13C2-PFHxA	118.4	0	162.2	0	73	50-150		21.7			
Surr: 13C2-PFTeA	124	0	162.2	0	76.5	50-150		18.3	30		
Surr: 13C2-PFUnA	132.1	0	162.2	0	81.4	50-150		5.84			
Surr: 13C3-HFPO-DA	122.6	0	162.2	0	75.6	50-150		20.6	30		
Surr: 13C3-PFBS	111.2	0	150.9	0	73.7	50-150		11.6			
Surr: 13C4-PFBA	124.6	0	162.2	0	76.8	50-150		8.65	30		
Surr: 13C4-PFHpA	110	0	162.2	0	67.8	50-150		12.5			
Surr: 13C4-PF0A	116.9	0	162.2 162.2								
Suil. ISC4-FFCA	123.5	U	154.9	0	72.1 79.7	50-150 50-150		12.6 11.8	30 30		

Note:

See Qualifiers Page for a list of Qualifiers and their explanation.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 196606	Instrument ID LCMS1		Method	E537 Mod					
Surr: 13C5-PFNA	129.3	0	162.2	0	79.7	50-150	132.9	2.71	30
Surr: 13C5-PFPeA	126.7	0	162.2	0	78.1	50-150	133.5	5.17	30
Surr: 13C8-FOSA	110.2	0	162.2	0	67.9	50-150	119.3	7.92	30
Surr: 1802-PFHxS	118.4	0	153.3	0	77.2	50-150	117.2	1	30
Surr: d5-N-EtFOSAA	133.1	0	162.2	0	82	50-150	144.5	8.25	30
Surr: d3-N-MeFOSAA	159.4	0	162.2	0	98.3	50-150	151.4	5.14	30

The following samples were analyzed in this batch:

22051511-01E	22051511-02E	22051511-03E	
22051511-04E	22051511-05E	22051511-06E	
22051511-07E			

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 196707 Instrument ID LCMS1 Method: E537 Mod

MS Sample	ID: 2205127	1-01B MS				Jnits: ng/L	-	Analysis Date: 5/2	25/2022 06	:19 AM
Client ID:		Run ID	LCMS1	_220524B	Se	eqNo: 845 4	4713	Prep Date: 5/23/2022	DF: 1	
					SPK Ref		Control	RPD Ref	RPD	
Analyte		Result	PQL	SPK Val	Value	%REC	Limit	Value %RPD	Limit	Qua
Fluorotelomer Sulphonic Acid	1:2 (FtS	41.58	4.7	28.03	0	148	63-143	0		S
Fluorotelomer Sulphonic Acid	6:2 (FtS	38.96	4.7	28.4	4.299	122	63-162	0		
Fluorotelomer Sulphonic Acid	3:2 (FtS	29.79	4.7	28.78	0	104	61-165	0		
Perfluorobutanesulfonic Acid (I	PFBS)	31.51	4.7	26.53	0	119	72-130	0		
Perfluorobutanoic Acid (PFBA)		39.95	4.7	30	0	133	73-129	0		S
Perfluorodecanesulfonic Acid (PFDS)	29.6	4.7	28.87	0	103	53-142	0		
Perfluorodecanoic Acid (PFDA)	36.36	4.7	30	0	121	71-129	0		
Perfluorododecanoic Acid (PFI	DoA)	32.82	4.7	30	0	109	72-134	0		
Perfluoroheptanesulfonic Acid	(PFHpS	26.22	4.7	28.59	0	91.7	69-134	0		
Perfluoroheptanoic Acid (PFH)		34.86	4.7	30	0	116	72-130	0		
Perfluorohexanesulfonic Acid (,	31.89	4.7	27.28	0	117	68-131	0		
Perfluorohexanoic Acid (PFHx		33.46	4.7	30	0	112	72-129			
Perfluorononanesulfonic Acid (,	40.59	4.7	28.78	0	141	69-127	0		S
Perfluorononanoic Acid (PFNA	,	31.84	4.7	30	0	106	69-130	0		
Perfluorooctanesulfonamide (F	,	39.55	4.7	30	0	132	67-137	0		
Perfluorooctanesulfonic Acid (I		30.73	1.9	27.84	1.158	106	65-140	0		
Perfluorooctanoic Acid (PFOA)	,	40.78	1.9	30	0	136	71-133			S
Perfluoropentanesulfonic Acid		26.87	4.7	28.12	0	95.6	71-127	0		
Perfluoropentanoic Acid (PFPe	•	37.31	4.7	30	0	124	72-129	0		
Perfluorotetradecanoic Acid (P		34.08	4.7	30	0	114	71-132			
Perfluorotridecanoic Acid (PFT	,	43.24	4.7	30	0	144	65-144	0		S
Perfluoroundecanoic Acid (PFI		32.9	4.7	30	0	110	69-133	0		
N-Ethylperfluorooctanesulfona	,	32.4	4.7	30	1.66	102	61-135			
N-Methylperfluorooctanesulfon		46.48	4.7	30	0	155	65-136			S
Hexafluoropropylene oxide dim		36.89	4.7	30	0	123	70-130			3
4,8-Dioxa-3H-perfluorononano		23.98	4.7	28.22	0	85	70-130	0		
4,6-bloxa-3i i-periluororioriario 11Cl-Pf3OUdS	c Acid (28.31	4.7	28.22	0	100	70-130			
9CI-PF3ONS		42.95	4.7	27.93	0	154	70-130	0		S
		42.93 122.1			0					3
Surr: 13C2-FtS 4:2		124.6	0	140.1		87.2 97.5	50-150			
Surr: 13C2-FtS 6:2		124.6 111.8		142.5	0	87.5	50-150 50-150			
Surr: 13C2-FtS 8:2		107.5	0	143.7	0	77.8	50-150			
Surr: 13C2-PFDA			0	150	0	71.7	50-150			
Surr: 13C2-PFDoA		95.53	0	150	0	63.7	50-150			
Surr: 13C2-PFHxA		124.2 57.26	0	150	0	82.8	50-150			_
Surr: 13C2-PFTeA		57.36	0	150	0	38.2	50-150			S
Surr: 13C2-PFUnA		128.2	0	150	0	85.5	50-150			
Surr: 13C3-HFPO-DA		119.7	0	150	0	79.8	50-150			
Surr: 13C3-PFBS		119.6	0	139.5	0	85.7	50-150			
Surr: 13C4-PFBA		136.4	0	150	0	91	50-150			
Surr: 13C4-PFHpA		135.3	0	150	0	90.2	50-150			
Surr: 13C4-PFOA		137.3	0	150	0	91.5	50-150			
Surr: 13C4-PFOS		115.7	0	143.2	0	80.8	50-150	0		

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 196707	Instrument ID LCMS1		Method	E537 Mod			
Surr: 13C5-PFNA	164.4	0	150	0	110	50-150	0
Surr: 13C5-PFPeA	129.5	0	150	0	86.4	50-150	0
Surr: 13C8-FOSA	169.8	0	150	0	113	50-150	0
Surr: 1802-PFHxS	146.5	0	141.7	0	103	50-150	0
Surr: d5-N-EtFOSAA	157.4	0	150	0	105	50-150	0
Surr: d3-N-MeFOSAA	103.9	0	150	0	69.3	50-150	0

мѕ	Sample ID: 22051271-01B MS						nits: ng/L		Analysis Date: 5/25/2022 12:40 PM			
Client ID:	Run ID: LCMS1_220524B			SeqNo: 8454756		1756	Prep Date: 5/23/2022		DF: 1			
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Perfluoroheptanesul	fonic Acid (PFHpS	23.96	4.7	28.59		0	83.8	69-134		0		

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 196707 Instrument ID LCMS1 Method: E537 Mod

Date(11D. 190707	mstrument ib			- Wictio	u. E337 N	nou .						
DUP	Sample ID: 2205108	37-02A DUP				U	nits: ng/L		Analysis	5/2022 06:27 AM		
Client ID:		Run ID	: LCMS1_220524B			SeqNo: 8454714		1714	Prep Date: 5/23/2022		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Fluorotelomer Sulpho	nic Acid 4·2 (FtS	ND	5.0	0		0	0	0-0	0	0	30	
Fluorotelomer Sulpho		2.3	5.0	0		0	0	0-0	0	0	30	J
Fluorotelomer Sulpho	•	ND	5.0	0		0	0	0-0	0	0	30	
Perfluorobutanesulfor		2.439	5.0	0		0	0	0-0	1.907	0	30	J
Perfluorobutanoic Aci	,	7.067	5.0	0		0	0	0-0	7.444	5.19	30	
Perfluorodecanesulfo	,	ND	5.0	0		0	0	0-0	0	0	30	
Perfluorodecanoic Ac	, ,	ND	5.0	0		0	0	0-0	0	0	30	
Perfluorododecanoic		ND	5.0	0		0	0	0-0	0	0	30	
Perfluoroheptanesulfo	onic Acid (PFHpS	2.579	5.0	0		0	0	0-0	0	0	30	J
Perfluoroheptanoic A	` .	3.51	5.0	0		0	0	0-0	3.632	0	30	J
Perfluorohexanesulfo	` ' '	2.747	5.0	0		0	0	0-0	1.914	0	30	J
Perfluorohexanoic Ac	, ,	7.041	5.0	0		0	0	0-0	7.469	5.89	30	
Perfluorononanesulfo	nic Acid (PFNS)	ND	5.0	0		0	0	0-0	0	0	30	
Perfluorononanoic Ac	id (PFNA)	ND	5.0	0		0	0	0-0	0	0	30	
Perfluorooctanesulfor	namide (PFOSA)	ND	5.0	0		0	0	0-0	0	0	30	
Perfluorooctanesulfor	nic Acid (PFOS)	1.21	2.0	0		0	0	0-0	2.006	0	30	J
Perfluorooctanoic Aci	d (PFOA)	12.23	2.0	0		0	0	0-0	11.28	8.03	30	
Perfluoropentanesulfo	onic Acid (PFPeS	ND	5.0	0		0	0	0-0	0	0	30	
Perfluoropentanoic Ad	cid (PFPeA)	10.85	5.0	0		0	0	0-0	10.02	7.96	30	
Perfluorotetradecanoi		ND	5.0	0		0	0	0-0	0	0	30	
Perfluorotridecanoic <i>A</i>	Acid (PFTriA)	ND	5.0	0		0	0	0-0	0	0	30	
Perfluoroundecanoic	Acid (PFUnA)	ND	5.0	0		0	0	0-0	0	0	30	
N-Ethylperfluorooctan	esulfonamidoace	ND	5.0	0		0	0	0-0	0	0	30	
N-Methylperfluoroocta	anesulfonamidoa	ND	5.0	0		0	0	0-0	0	0	30	
Hexafluoropropylene	oxide dimer acid	ND	5.0	0		0	0	0-0	0	0	30	
4,8-Dioxa-3H-perfluor	ononanoic Acid (ND	5.0	0		0	0	0-0	0	0	30	
11CI-Pf3OUdS		ND	5.0	0		0	0	0-0	0	0	30	
9CI-PF3ONS		ND	5.0	0	-	0	0	0-0	0	0	30	
Surr: 13C2-FtS 4:2		112.1	0	148.3		0	75.6	50-150	150.8	29.4	30	
Surr: 13C2-FtS 6:2		109.1	0	150.9	-	0	72.3	50-150	141.3	25.7	30	
Surr: 13C2-FtS 8:2		112.2	0	152.1		0	73.7	50-150	229.4	68.6	30	R
Surr: 13C2-PFDA		101.1	0	158.8		0	63.7	50-150	115.7	13.4	30	
Surr: 13C2-PFDoA		95.99	0	158.8		0	60.4	50-150	94.53	1.54	30	
Surr: 13C2-PFHxA		100.2	0	158.8		0	63.1	50-150	95.01	5.32	30	
Surr: 13C2-PFTeA		105	0	158.8		0	66.1	50-150	122.4	15.3	30	
Surr: 13C2-PFUnA		149.5	0	158.8		0	94.1	50-150	118.7	23	30	
Surr: 13C3-HFPO-	DA	90.93	0	158.8		0	57.3	50-150	97.28	6.75	30	
Surr: 13C3-PFBS		109.6	0	147.7	_	0	74.2	50-150	93.66	15.7	30	· <u> </u>
Surr: 13C4-PFBA		125.2	0	158.8		0	78.8	50-150	99.01	23.3	30	
Surr: 13C4-PFHpA		143.2	0	158.8		0	90.2	50-150	103.3	32.3	30	R
Surr: 13C4-PFOA		148.9	0	158.8		0	93.8	50-150	97.45	41.8	30	R
Surr: 13C4-PFOS		113.8	0	151.7		0	75	50-150	91.73	21.4	30	

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 196707	Instrument ID LCMS1		Method	E537 Mod						
Surr: 13C5-PFNA	132.5	0	158.8	0	83.5	50-150	105.8	22.4	30	
Surr: 13C5-PFPeA	108.4	0	158.8	0	68.2	50-150	102.8	5.26	30	
Surr: 13C8-FOSA	128.8	0	158.8	0	81.1	50-150	99.84	25.4	30	
Surr: 1802-PFHxS	130.4	0	150.1	0	86.9	50-150	80.01	47.9	30	R
Surr: d5-N-EtFOSAA	152	0	158.8	0	95.7	50-150	123.9	20.4	30	
Surr. d3-N-MeFOSAA	84.71	0	158.8	0	53.3	50-150	135.3	46	30	R

DUP Sample ID: 22	Sample ID: 22051087-02A DUP						Analysis Date: 5/25/2022 12:48 PM			
Client ID:	Run ID: LCMS1_220524B				SeqNo: 8454757		Prep Date: 5/23/2022		DF:	1
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Perfluoroheptanesulfonic Acid (PFH)	pS 1.693	5.0	0		0 0	0-0		0	0 3	0 J

The following samples were analyzed in this batch:

22051511-08E	22051511-09E	22051511-10E	
22051511-11E	22051511-12E	22051511-13A	
22051511-14E	22051511-16E		

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 196624 Instrument ID SVMS8 Method: SW846 8270D

MBLK	Sample ID: SBL	KW1-196624-196	624			Units: µg/L	-	Analysis Date: 5/20/2022 03:54 PM				
Client ID:		Run ID	SVMS8	_220520A		SeqNo: 844	4873	Prep Date: 5/2	20/2022	DF: 1		
					SPK Ref		Control	RPD Ref		RPD		
Analyte		Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qua	
1,1`-Biphenyl		ND	5.0									
2,4,5-Trichlorophe	enol	ND	5.0									
2,4,6-Trichlorophe	enol	ND	5.0									
2,4-Dichloropheno	ol	ND	5.0									
2,4-Dimethylphen	ol	ND	5.0									
2,4-Dinitrophenol		ND	5.0									
2,4-Dinitrotoluene		ND	5.0									
2,6-Dinitrotoluene		ND	5.0									
2-Chloronaphthale		ND	5.0									
2-Chlorophenol		ND	5.0									
2-Methylnaphthale	ene	ND	5.0									
2-Methylphenol		ND	5.0									
2-Nitroaniline		ND	5.0									
2-Nitrophenol		ND	5.0									
3&4-Methylpheno	1	ND	5.0									
3,3'-Dichlorobenz		ND	5.0									
3-Nitroaniline	idilic	ND	5.0									
4,6-Dinitro-2-meth	winhonol	ND	5.0									
		ND	5.0									
4-Bromophenyl ph		ND	5.0									
4-Chloro-3-methyl	iprierioi	ND										
4-Chloroaniline			5.0									
4-Chlorophenyl ph	nenyl ether	ND	5.0									
4-Nitroaniline		ND	5.0									
4-Nitrophenol		ND	5.0									
Acenaphthene		ND	5.0									
Acenaphthylene		ND	5.0									
Acetophenone		ND	1.0									
Anthracene		ND	5.0									
Atrazine		ND	1.0									
Benzaldehyde		ND	1.0									
Benzo(a)anthrace	ne	ND	5.0									
Benzo(a)pyrene		ND	5.0									
Benzo(b)fluoranth	ene	ND	5.0									
Benzo(g,h,i)peryle	ene	ND	5.0									
Benzo(k)fluoranth	ene	ND	5.0									
Bis(2-chloroethox	y)methane	ND	5.0									
Bis(2-chloroethyl)	ether	ND	5.0									
Bis(2-chloroisopro	ppyl)ether	ND	5.0									
Bis(2-ethylhexyl)p	hthalate	ND	5.0									
Butyl benzyl phtha		ND	5.0									
Caprolactam		ND	10									
Carbazole		ND	5.0									

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 196624	Instrument ID SVMS8		Method:	SW846 827	DD D			
Chrysene	ND	5.0						
Dibenzo(a,h)anthracene	ND	5.0						
Dibenzofuran	ND	5.0						
Diethyl phthalate	ND	5.0						
Dimethyl phthalate	ND	5.0						
Di-n-butyl phthalate	ND	5.0						
Di-n-octyl phthalate	ND	5.0						
Fluoranthene	ND	5.0						
Fluorene	ND	5.0						
Hexachlorobenzene	ND	5.0						
Hexachlorobutadiene	ND	5.0						
Hexachlorocyclopentadiene	ND	5.0						
Hexachloroethane	ND	5.0						
Indeno(1,2,3-cd)pyrene	ND	5.0						
Isophorone	ND	5.0						
Naphthalene	ND	5.0						
Nitrobenzene	ND	5.0						
N-Nitrosodi-n-propylamine	ND	5.0						
N-Nitrosodiphenylamine	ND	5.0						
Pentachlorophenol	ND	5.0						
Phenanthrene	ND	5.0						
Phenol	ND	5.0						
Pyrene	ND	5.0						
Surr: 2,4,6-Tribromophene	ol 34.59	0	50	0	69.2	27-83	0	
Surr: 2-Fluorobiphenyl	36.13	0	50	0	72.3	26-79	0	
Surr: 2-Fluorophenol	24.84	0	50	0	49.7	13-56	0	
Surr: 4-Terphenyl-d14	43.12	0	50	0	86.2	43-106	0	
Surr: Nitrobenzene-d5	35.35	0	50	0	70.7	29-80	0	
Surr: Phenol-d6	17.35	0	50	0	34.7	10-35	0	

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 196624 Instrument ID SVMS8 Method: SW846 8270D

LCS	Sample ID: SLCS	W1-196624-196	624			Units: µg/L Analysis Date: \$					5/20/2022 04:15 PM		
Client ID:		Run ID	: SVMS8	_220520A		Se	qNo: 844 4	4874	Prep Date: 5/20	0/2022	DF: 1		
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
1,1`-Biphenyl		14.05	5.0	20		0	70.2	40-85	0				
2,4,5-Trichlorophe	nol	14.72	5.0	20		0	73.6	47-84	0				
2,4,6-Trichlorophe		14.77	5.0	20		0	73.8	45-83	0				
2,4-Dichloropheno		14.3	5.0	20		0	71.5	39-84	0				
2,4-Dimethylpheno		13.88	5.0	20		0	69.4	34-79	0				
2,4-Dinitrophenol	51	11.64	5.0	20		0	58.2	11-117					
2,4-Dinitrotoluene		14.78	5.0	20		0	73.9	54-93	0				
2,6-Dinitrotoluene		15.05	5.0	20		0	75.2	51-90	0				
2-Chloronaphthale	ene	14.74	5.0	20		0	73.7	37-84	0				
2-Chlorophenol	,,,,,	14.12	5.0	20		0	70.6	38-83	0				
2-Methylnaphthale	ene	13.99	5.0	20		0	70.0	33-85	0				
2-Methylphenol		13.06	5.0	20		0	65.3	29-76	0				
2-Nitroaniline		15.25	5.0	20		0	76.2	45-94	0				
2-Nitrophenol		14.26	5.0	20		0	71.3	41-84	0				
3&4-Methylphenol		12.01	5.0	20		0	60	24-70	0				
3,3'-Dichlorobenzi		14.34	5.0	20		0	71.7	39-96	0				
3-Nitroaniline		15.14	5.0	20		0	75.7	50-93	0				
4,6-Dinitro-2-meth	vlphenol	14.31	5.0	20		0	71.6	23-116					
4-Bromophenyl ph		15.3	5.0	20		0	76.5	51-93	0				
4-Chloro-3-methyl	-	14.35	5.0	20		0	71.8	41-86	0				
4-Chloroaniline		14.69	5.0	20		0	73.4	44-92	0				
4-Chlorophenyl ph	envl ether	14.48	5.0	20		0	72.4	49-89	0				
4-Nitroaniline	,	15.04	5.0	20		0	75.2	47-98	0				
4-Nitrophenol		7.85	5.0	20		0	39.2	10-43	0				
Acenaphthene		14.44	5.0	20		0	72.2	42-85	0				
Acenaphthylene		14.84	5.0	20		0	74.2	42-88	0				
Acetophenone		14.64	1.0	20		0	73.2	39-91	0				
Anthracene		15.15	5.0	20		0	75.8	55-93	0				
Atrazine		14.98	1.0	20		0	74.9	52-100	0				
Benzaldehyde		15.82	1.0	20		0	79.1	42-110	0				
Benzo(a)anthracer	ne	15.9	5.0	20		0	79.5	56-91	0				
Benzo(a)pyrene		15.46	5.0	20		0	77.3	55-96	0				
Benzo(b)fluoranthe	ene	15.82	5.0	20		0	79.1	55-99	0				
Benzo(g,h,i)peryle		15.29	5.0	20		0	76.4	44-102	0				
Benzo(k)fluoranthe		16.8	5.0	20		0	84	57-96	0				
Bis(2-chloroethoxy		14.45	5.0	20		0	72.2	39-88	0				
Bis(2-chloroethyl)e	<i>'</i>	14.43	5.0	20		0	72.2	36-91	0				
Bis(2-chloroisopro		14.29	5.0	20		0	71.4	33-83	0				
Bis(2-ethylhexyl)ph	,	15.06	5.0	20		0	75.3	39-113					
Butyl benzyl phtha		14.61	5.0	20		0	73	49-97	0				
Carbazole		15.15	5.0	20		0	75.8	59-92	0				
Chrysene		16.53	5.0	20		0	82.6	55-92	0				

The Mannik & Smith Group, Inc.

QC BATCH REPORT

Work Order: 22051511

Client:

Project: Former Mount Pleasant Landfill

Batch ID: 196624	Instrument ID SVMS8		Method:	SW846 827	0D			
Dibenzo(a,h)anthracene	14.81	5.0	20	0	74	47-100	0	
Dibenzofuran	14.74	5.0	20	0	73.7	44-89	0	
Diethyl phthalate	14.41	5.0	20	0	72	54-95	0	
Dimethyl phthalate	14.81	5.0	20	0	74	51-92	0	
Di-n-butyl phthalate	14.87	5.0	20	0	74.4	57-98	0	
Di-n-octyl phthalate	14.31	5.0	20	0	71.6	36-117	0	
Fluoranthene	15.06	5.0	20	0	75.3	59-93	0	
Fluorene	14.64	5.0	20	0	73.2	47-91	0	
Hexachlorobenzene	14.8	5.0	20	0	74	53-89	0	
Hexachlorobutadiene	12.9	5.0	20	0	64.5	11-83	0	
Hexachlorocyclopentadiene	8.98	5.0	20	0	44.9	14-75	0	
Hexachloroethane	12.78	5.0	20	0	63.9	10-85	0	
Indeno(1,2,3-cd)pyrene	13.97	5.0	20	0	69.8	46-102	0	
Isophorone	14.72	5.0	20	0	73.6	42-90	0	
Naphthalene	13.83	5.0	20	0	69.2	26-78	0	
Nitrobenzene	15.01	5.0	20	0	75	38-86	0	
N-Nitrosodi-n-propylamine	14.82	5.0	20	0	74.1	39-95	0	
N-Nitrosodiphenylamine	15.2	5.0	20	0	76	47-94	0	
Pentachlorophenol	14.21	5.0	20	0	71	37-94	0	
Phenanthrene	15.27	5.0	20	0	76.4	51-90	0	
Phenol	7.26	5.0	20	0	36.3	10-40	0	
Pyrene	16.7	5.0	20	0	83.5	48-98	0	
Surr: 2,4,6-Tribromopher	ool 37.87	0	50	0	75.7	27-83	0	
Surr: 2-Fluorobiphenyl	36.45	0	50	0	72.9	26-79	0	
Surr: 2-Fluorophenol	23.49	0	50	0	47	13-56	0	
Surr: 4-Terphenyl-d14	42.21	0	50	0	84.4	43-106	0	
Surr: Nitrobenzene-d5	36.13	0	50	0	72.3	29-80	0	
Surr: Phenol-d6	15.56	0	50	0	31.1	10-35	0	

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 196624 Instrument ID SVMS8 Method: SW846 8270D

LCSD	Sample ID: SLCSD\	W1-196624-19	6624			U	nits: µg/L	•	Analysis	Date: 5/20	0/2022 04:	35 PM
Client ID:		Run ID	: SVMS8	_220520A		Sec	qNo: 844 4	4875	Prep Date: 5/20	/2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
1,1`-Biphenyl		11.55	5.0	20		0	57.8	40-85	14.05	19.5	30	
2,4,5-Trichlorophen	ol.	12.55	5.0	20		0	62.8	47-84	14.72	15.9	30	
2,4,6-Trichlorophen		12.04	5.0	20		0	60.2	45-83	14.72	20.4	30	
2,4,6-Theriotophenol	OI .	11.36	5.0	20		0	56.8	39-84	14.77	22.9	30	
2,4-Dictioropherior		11.63	5.0	20		0	58.2	34-79	13.88	17.6	30	
2,4-Dinitrophenol		7.65	5.0	20		0	38.2	11-117		41.4	30	R
·		13.3	5.0 5.0	20			38.2 66.5	54-93	14.78			ĸ
2,4-Dinitrotoluene		13.02				0				10.5	30	
2,6-Dinitrotoluene	_		5.0	20		0	65.1	51-90	15.05	14.5	30	
2-Chloronaphthalen	е	11.74	5.0	20		0	58.7	37-84	14.74	22.7	30	
2-Chlorophenol		11.52	5.0	20		0	57.6	38-83	14.12	20.3	30	
2-Methylnaphthalen	е	11.17	5.0	20		0	55.8	33-85	13.99	22.4	30	
2-Methylphenol		11.38	5.0	20		0	56.9	29-76	13.06	13.7	30	
2-Nitroaniline		13.33	5.0	20		0	66.6	45-94	15.25	13.4	30	
2-Nitrophenol		10.9	5.0	20		0	54.5	41-84	14.26	26.7	30	
3&4-Methylphenol		10.45	5.0	20		0	52.2	24-70	12.01	13.9	30	
3,3'-Dichlorobenzid	ine	12.51	5.0	20		0	62.6	39-96	14.34	13.6	30	
3-Nitroaniline		14.27	5.0	20		0	71.4	50-93	15.14	5.92	30	
4,6-Dinitro-2-methyl	phenol	11.28	5.0	20		0	56.4	23-116	14.31	23.7	30	
4-Bromophenyl phe	nyl ether	13.39	5.0	20		0	67	51-93	15.3	13.3	30	
4-Chloro-3-methylpl	nenol	12.37	5.0	20		0	61.8	41-86	14.35	14.8	30	
4-Chloroaniline		12.49	5.0	20		0	62.4	44-92	14.69	16.2	30	
4-Chlorophenyl phe	nyl ether	12.4	5.0	20		0	62	49-89	14.48	15.5	30	
4-Nitroaniline		13.44	5.0	20		0	67.2	47-98	15.04	11.2	30	
4-Nitrophenol		6.84	5.0	20		0	34.2	10-43	7.85	13.8	30	
Acenaphthene		11.96	5.0	20		0	59.8	42-85	14.44	18.8	30	
Acenaphthylene		12.35	5.0	20		0	61.8	42-88	14.84	18.3	30	
Acetophenone		11.91	1.0	20		0	59.6	39-91	14.64	20.6	30	
Anthracene		13.4	5.0	20		0	67	55-93	15.15	12.3	30	
Atrazine		13.43	1.0	20		0	67.2	52-100	14.98	10.9	30	
Benzaldehyde		12.57	1.0	20		0	62.8	42-110	15.82	22.9	30	
Benzo(a)anthracene	е	14.08	5.0	20		0	70.4	56-91	15.9	12.1	30	
Benzo(a)pyrene		13.46	5.0	20		0	67.3	55-96	15.46	13.8	30	
Benzo(b)fluoranthe	ne	14.46	5.0	20		0	72.3	55-99	15.82	8.98	30	
Benzo(g,h,i)perylen		12.99	5.0	20		0	65	44-102		16.3	30	
Benzo(k)fluoranther		14.4	5.0	20		0	72	57-96	16.8	15.4	30	
Bis(2-chloroethoxy)		11.71	5.0	20		0	58.6	39-88	14.45	20.9	30	
Bis(2-chloroethyl)et		11.53	5.0	20		0	57.6	36-91	14.43	22.3	30	
Bis(2-chloroisoprop		11.39	5.0	20		0	57	33-83	14.29	22.6	30	
Bis(2-ethylhexyl)pht	• •	13.33	5.0	20		0	66.6	39-113		12.2		
Butyl benzyl phthala		13.17	5.0	20		0	65.8	49-97	14.61	10.4	30	
Carbazole		13.54	5.0	20		0	67.7	59-92	15.15	11.2		
Chrysene		14.3	5.0	20		0	71.5	55-92	16.53	14.5	30	

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: 196624	Instrument ID SVMS8		Method:	SW846 827	0D				
Dibenzo(a,h)anthracene	12.56	5.0	20	0	62.8	47-100	14.81	16.4	30
Dibenzofuran	12.4	5.0	20	0	62	44-89	14.74	17.2	30
Diethyl phthalate	12.96	5.0	20	0	64.8	54-95	14.41	10.6	30
Dimethyl phthalate	12.87	5.0	20	0	64.4	51-92	14.81	14	30
Di-n-butyl phthalate	13.05	5.0	20	0	65.2	57-98	14.87	13	30
Di-n-octyl phthalate	12.64	5.0	20	0	63.2	36-117	14.31	12.4	30
Fluoranthene	13.29	5.0	20	0	66.4	59-93	15.06	12.5	30
Fluorene	12.45	5.0	20	0	62.2	47-91	14.64	16.2	30
Hexachlorobenzene	13.21	5.0	20	0	66	53-89	14.8	11.4	30
Hexachlorobutadiene	10.6	5.0	20	0	53	11-83	12.9	19.6	30
Hexachlorocyclopentadiene	7.62	5.0	20	0	38.1	14-75	8.98	16.4	30
Hexachloroethane	10.66	5.0	20	0	53.3	10-85	12.78	18.1	30
Indeno(1,2,3-cd)pyrene	11.91	5.0	20	0	59.6	46-102	13.97	15.9	30
Isophorone	12.2	5.0	20	0	61	42-90	14.72	18.7	30
Naphthalene	11.07	5.0	20	0	55.4	26-78	13.83	22.2	30
Nitrobenzene	12	5.0	20	0	60	38-86	15.01	22.3	30
N-Nitrosodi-n-propylamine	11.94	5.0	20	0	59.7	39-95	14.82	21.5	30
N-Nitrosodiphenylamine	13.36	5.0	20	0	66.8	47-94	15.2	12.9	30
Pentachlorophenol	12.5	5.0	20	0	62.5	37-94	14.21	12.8	30
Phenanthrene	13.62	5.0	20	0	68.1	51-90	15.27	11.4	30
Phenol	6.32	5.0	20	0	31.6	10-40	7.26	13.8	30
Pyrene	15.07	5.0	20	0	75.4	48-98	16.7	10.3	30
Surr: 2,4,6-Tribromopher	ool 32.26	0	50	0	64.5	27-83	37.87	16	40
Surr: 2-Fluorobiphenyl	28.54	0	50	0	57.1	26-79	36.45	24.3	40
Surr: 2-Fluorophenol	20.12	0	50	0	40.2	13-56	23.49	15.5	40
Surr: 4-Terphenyl-d14	38.32	0	50	0	76.6	43-106	42.21	9.66	40
Surr: Nitrobenzene-d5	28.61	0	50	0	57.2	29-80	36.13	23.2	40

Surr: Phenol-d6

22051511-01C	22051511-02C	22051511-03C	
22051511-04C	22051511-05C	22051511-06C	
22051511-07C	22051511-08C	22051511-09C	
22051511-10C	22051511-11C	22051511-12C	
22051511-14C	22051511-16C		

28.2

10-35

15.56

9.7

40

0

14.12

0

50

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: R344771a Instrument ID VMS8 Method: SW8260C

MBLK	Sample ID: 8V-B	LKW2-220519-R	344771a			Units: µg/L	-	Analys	19/2022 11:11 PM		
Client ID:		Run ID	: VMS8_2	220519B		SeqNo: 843	9351	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
1,1,1-Trichloroeth		ND ND	1.0								
1,1,2,2-Tetrachlo		ND ND	1.0								
1,1,2-Trichloroeth		ND ND	1.0								
1,1,2-Trichlorotrif		ND ND	1.0 1.0								
1,1-Dichloroethar		ND ND	1.0								
1,1-Dichloroether		ND ND	1.0								
1,2-Dibromo-3-ch		ND ND	1.0								
1,2-Dibromoetha		ND	1.0								
1,2-Dibromoetria		ND	1.0								
1,2-Dichloroethar		ND	1.0								
1,2-Dichloropropa		ND ND	1.0								
1.3-Dichlorobenz		ND	1.0								
1,4-Dichlorobenz		ND	1.0								
2-Butanone	ene	ND	5.0								
2-Hexanone		ND	5.0								
4-Methyl-2-penta	inone	ND	1.0								
Acetone	mone	ND	10								
Benzene		ND	1.0								
Bromodichlorome	ethane	ND	1.0								
Bromoform	outano	ND	1.0								
Bromomethane		ND	1.0								
Carbon disulfide		ND	1.0								
Carbon tetrachlo	ride	ND	1.0								
Chlorobenzene		ND	1.0								
Chloroethane		ND	1.0								
Chloroform		ND	1.0								
Chloromethane		ND	1.0								
cis-1,2-Dichloroe	thene	ND	1.0								
cis-1,3-Dichlorop		ND	1.0								
Cyclohexane	•	ND	2.0								
Dibromochlorome	ethane	ND	1.0								
Dichlorodifluorom		ND	1.0								
Ethylbenzene		ND	1.0								
Isopropylbenzene	e	ND	1.0								
Methyl acetate		ND	2.0								
Methyl tert-butyl	ether	ND	1.0								
Methylcyclohexa		ND	1.0								
Methylene chloric		ND	5.0								
Styrene		ND	1.0								
Tetrachloroethen	ie	ND	1.0								
Toluene		ND	1.0								

Work Order: 22051511

Surr: Toluene-d8

Project: Former Mount Pleasant Landfill

20.95

0

Troject.	er Wount i leasant Landini							
Batch ID: R344771a	Instrument ID VMS8		Method:	SW8260C				
trans-1,2-Dichloroethene	ND	1.0						
trans-1,3-Dichloropropene	ND	1.0						
Trichloroethene	ND	1.0						
Trichlorofluoromethane	ND	1.0						
Vinyl chloride	ND	1.0						
Xylenes, Total	ND	3.0						
Surr: 1,2-Dichloroethane-	d4 19.56	0	20	0	97.8	75-120	0	
Surr: 4-Bromofluorobenze	ene 18.58	0	20	0	92.9	80-110	0	
Surr: Dibromofluorometha	ane 20.29	0	20	0	101	85-115	0	

20

0

105

85-110

0

Note:

See Qualifiers Page for a list of Qualifiers and their explanation.

QC Page: 31 of 45

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: R344771a Instrument ID VMS8 Method: SW8260C

LCS	Sample ID: 8V-L0	CSW2-220519-R	344771a			U	Jnits: μg/L		Analysi	s Date: 5/1	9/2022 10	:15 PM
Client ID:		Run ID	: VMS8_2	220519B		Se	qNo: 843 9	9349	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
1,1,1-Trichloroethan	e	20.39	1.0	20		0	102	75-130	()		
1,1,2,2-Tetrachloroe		22.92	1.0	20		0	115	75-130	(
1.1.2-Trichloroethan		20.76	1.0	20		0	104	75-125	(
1,1,2-Trichlorotrifluo		20.9	1.0	20		0	104	50-150	(
1,1-Dichloroethane		19.55	1.0	20		0	97.8	68-142	(
1,1-Dichloroethene		20.24	1.0	20		0	101	70-145	(
1,2,4-Trichlorobenze	ene	20.69	1.0	20		0	103	70-135				
1,2-Dibromo-3-chlor		22.84	1.0	20		0	114	60-130	C			
1,2-Dibromoethane		21.99	1.0	20		0	110	67-155	C			
1,2-Dichlorobenzene	9	20.84	1.0	20		0	104	70-130	C			
1,2-Dichloroethane		19.66	1.0	20		0	98.3	78-125				
1,2-Dichloropropane	!	19.17	1.0	20		0	95.8	75-125	C			
1.3-Dichlorobenzene		20.15	1.0	20		0	101	75-130				
1,4-Dichlorobenzene	9	19.93	1.0	20		0	99.6	75-130	C)		
2-Butanone		23.81	5.0	20		0	119	55-150	C			
2-Hexanone		24.62	5.0	20		0	123	60-135	C			
4-Methyl-2-pentanor	ne	32.06	1.0	20		0	160	77-178				
Acetone		23.16	10	20		0	116	60-160	C			
Benzene		19.64	1.0	20		0	98.2	70-130	C			
Bromodichlorometha	ane	19.08	1.0	20		0	95.4	75-125	C			
Bromoform		18.04	1.0	20		0	90.2	60-125				
Bromomethane		20.42	1.0	20		0	102	30-185	C			
Carbon disulfide		21.36	1.0	20		0	107	60-165				
Carbon tetrachloride	!	19.03	1.0	20		0	95.2	65-140	C			
Chlorobenzene		20.87	1.0	20		0	104	80-120	C			
Chloroethane		14.58	1.0	20		0	72.9	31-172	(
Chloroform		19.48	1.0	20		0	97.4	66-135				
Chloromethane		14.92	1.0	20		0	74.6	46-148	C			
cis-1,2-Dichloroethe	ne	19.9	1.0	20		0	99.5	75-134	C			
cis-1,3-Dichloroprop		17.34	1.0	20		0	86.7	70-130	C)		
Cyclohexane		19.97	2.0	20		0	99.8	50-150	C			
Dibromochlorometha	ane	19.26	1.0	20		0	96.3	60-115	C)		
Dichlorodifluorometh		20.55	1.0	20		0	103	10-180	C			
Ethylbenzene		20.85	1.0	20		0	104	76-123	(
sopropylbenzene		21.3	1.0	20		0	106	80-127	(
Methyl tert-butyl ethe	er	22.28	1.0	20		0	111	68-129	(
Methylcyclohexane		20.35	1.0	20		0	102	50-150	(
Methylene chloride		20.24	5.0	20		0	101	72-125				
Styrene		21.55	1.0	20		0	108	79-117	(
Tetrachloroethene		20.08	1.0	20		0	100	68-166	(
Toluene		19.66	1.0	20		0	98.3	76-125	(
trans-1,2-Dichloroeth	nene	21.4	1.0	20		0	107	80-140	(

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: R344771a	Instrument ID VMS8		Method:	SW8260C			
trans-1,3-Dichloropropene	17.52	1.0	20	0	87.6	56-132	0
Trichloroethene	18.47	1.0	20	0	92.4	77-125	0
Trichlorofluoromethane	17.56	1.0	20	0	87.8	60-140	0
Vinyl chloride	19.92	1.0	20	0	99.6	50-136	0
Xylenes, Total	64.29	3.0	60	0	107	76-127	0
Surr: 1,2-Dichloroethane	e-d4 20.15	0	20	0	101	75-120	0
Surr: 4-Bromofluoroben:	zene 20.46	0	20	0	102	80-110	0
Surr: Dibromofluorometi	nane 20.28	0	20	0	101	85-115	0
Surr: Toluene-d8	19.1	0	20	0	95.5	85-110	0

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: R344771a Instrument ID VMS8 Method: SW8260C

MS	Sample ID: 22051	511-01A MS				Units: µg/l	-	Analysi	s Date: 5/2	0/2022 06:	51 AM
Client ID: MW-101		Run ID	VMS8_2	220519B	5	SeqNo: 843	9376	Prep Date:		DF: 1	
					SPK Ref		Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qua
1,1,1-Trichloroethan	e	20.84	1.0	20	0	104	75-130	()		
1,1,2,2-Tetrachloroe	thane	21.69	1.0	20	0	108	75-130	()		
1,1,2-Trichloroethan	е	21.48	1.0	20	0	107	75-125	()		
1,1,2-Trichlorotrifluo	roethane	19.37	1.0	20	0	96.8	50-150	()		
1,1-Dichloroethane		20.02	1.0	20	0	100	68-142	()		
1,1-Dichloroethene		19.78	1.0	20	0	98.9	70-145	()		
1,2,4-Trichlorobenze	ene	18.93	1.0	20	0	94.6	70-135	()		
1,2-Dibromo-3-chlor	opropane	20.49	1.0	20	0		60-130	()		
1,2-Dibromoethane		22.31	1.0	20	0	112	67-155	()		
1,2-Dichlorobenzen	e	20.26	1.0	20	0		70-130	(
1,2-Dichloroethane		20.05	1.0	20	0		78-125	(
1,2-Dichloropropane		19.11	1.0	20	0		75-125	(
1,3-Dichlorobenzen		18.68	1.0	20	0		75-130	(
1,4-Dichlorobenzen		19.02	1.0	20	0		75-130	(
2-Butanone	-	24.15	5.0	20	0		55-150	(
2-Hexanone		22.98	5.0	20	0		60-135	(
4-Methyl-2-pentanoi	ne	32.74	1.0	20	0		77-178	(
Acetone		25.83	10	20	1.76		60-160	(
Benzene		19.33	1.0	20	0		70-130	(
Bromodichlorometh:	ane	18.89	1.0	20	0		75-125	(
Bromoform		17.14	1.0	20	0		60-125	(
Bromomethane		29.53	1.0	20	0		30-185	(
Carbon disulfide		20.82	1.0	20	0		60-165	(
Carbon tetrachloride	<u> </u>	19.08	1.0	20	0		65-140	(
Chlorobenzene	•	19.62	1.0	20	0		80-120	(
Chloroethane		22.89	1.0	20	0		31-172	(
Chloroform		19.97	1.0	20	0		66-135	(
Chloromethane		13.97	1.0	20	0		46-148	(
cis-1,2-Dichloroethe	no	19.37	1.0	20	0		75-134	(
cis-1,2-Dichloroprop		15.21	1.0	20	0		70-130	(
	ene	20.09					50-150				
Cyclohexane Dibromochlorometh	ano	18.89	2.0 1.0	20	0		60-115	(
Dichlorodifluorometh		20.09					10-115				
	iaiie	20.09	1.0	20 20	0			(
Ethylbenzene		20.1					76-123				
Isopropylbenzene		21.98	1.0	20	0		80-127	(
Methyl tert-butyl eth	eı		1.0	20	0		68-129	(
Methylcyclohexane		18.76	1.0	20	0		50-150	(
Methylene chloride		19.87	5.0	20	0		72-125	(
Styrene		20.14	1.0	20	0		79-117	(
Tetrachloroethene		21.39	1.0	20	0		68-166	(
Toluene		19.58	1.0	20	0		76-125	(
trans-1,2-Dichloroet	hene	21.43	1.0	20	0	107	80-140	()		

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: R344771a Inst	rument ID VMS8		Method:	SW8260C			
trans-1,3-Dichloropropene	15.33	1.0	20	0	76.6	56-132	0
Trichloroethene	18.53	1.0	20	0	92.6	77-125	0
Trichlorofluoromethane	18.29	1.0	20	0	91.4	60-140	0
Vinyl chloride	21.87	1.0	20	0	109	50-136	0
Xylenes, Total	61.63	3.0	60	0	103	76-127	0
Surr: 1,2-Dichloroethane-d4	20.45	0	20	0	102	75-120	0
Surr: 4-Bromofluorobenzene	19.81	0	20	0	99	80-110	0
Surr: Dibromofluoromethane	20.46	0	20	0	102	85-115	0
Surr: Toluene-d8	20.03	0	20	0	100	85-110	0

Note:

See Qualifiers Page for a list of Qualifiers and their explanation.

QC Page: 35 of 45

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: R344771a Instrument ID VMS8 Method: SW8260C

DUP Sample ID: 22	2051511-02A DUP				L	Jnits: µg/L		Analys	s Date: 5/2	0/2022 06	:32 AM
Client ID: MW-102	Run ID:	VMS8_	220519B		Se	qNo: 843 9	9375	Prep Date:		DF: 1	
				SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
1,1,1-Trichloroethane	ND	1.0	0		0	0		() 0	30	
1,1,2,2-Tetrachloroethane	ND	1.0	0		0	0) 0		
1,1,2-Trichloroethane	ND	1.0	0		0	0		() 0		
1,1,2-Trichlorotrifluoroethane	ND	1.0	0		0	0		(0	30	
1,1-Dichloroethane	ND	1.0	0		0	0		(0	30	
1,1-Dichloroethene	ND	1.0	0		0	0		(0	30	
1,2,4-Trichlorobenzene	ND	1.0	0		0	0		(0	30	
1,2-Dibromo-3-chloropropane	ND	1.0	0		0	0		(0	30	
1,2-Dibromoethane	ND	1.0	0		0	0		(0	30	
1,2-Dichlorobenzene	ND	1.0	0		0	0		(0	30	
1,2-Dichloroethane	ND	1.0	0		0	0		(0	30	
1,2-Dichloropropane	ND	1.0	0		0	0		(0	30	
1,3-Dichlorobenzene	ND	1.0	0		0	0		(0	30	
1,4-Dichlorobenzene	ND	1.0	0		0	0		(0	30	
2-Butanone	ND	5.0	0		0	0		(0	30	
2-Hexanone	ND	5.0	0		0	0		(0	30	
4-Methyl-2-pentanone	ND	1.0	0		0	0		(0	30	
Acetone	ND	10	0		0	0		1.29	9 0	30	
Benzene	ND	1.0	0		0	0		(0	30	
Bromodichloromethane	ND	1.0	0		0	0		(0	30	
Bromoform	ND	1.0	0		0	0		(0	30	
Bromomethane	ND	1.0	0		0	0		(0	30	
Carbon disulfide	ND	1.0	0		0	0		(0	30	
Carbon tetrachloride	ND	1.0	0		0	0		(0	30	
Chlorobenzene	0.79	1.0	0		0	0		0.63	3 0	30	J
Chloroethane	ND	1.0	0		0	0		(0	30	
Chloroform	ND	1.0	0		0	0		(0	30	
Chloromethane	ND	1.0	0		0	0		(0	30	
cis-1,2-Dichloroethene	ND	1.0	0		0	0		(0	30	
cis-1,3-Dichloropropene	ND	1.0	0		0	0		(0	30	
Cyclohexane	ND	2.0	0		0	0		(0	30	
Dibromochloromethane	ND	1.0	0		0	0		(0	30	
Dichlorodifluoromethane	ND	1.0	0		0	0		(0	30	
Ethylbenzene	ND	1.0	0		0	0		(0	30	
Isopropylbenzene	ND	1.0	0		0	0		(0	30	
Methyl acetate	ND	2.0	0		0	0			0	30	
Methyl tert-butyl ether	ND	1.0	0		0	0		(0	30	
Methylcyclohexane	ND	1.0	0		0	0		(0	30	
Methylene chloride	ND	5.0	0		0	0		(0	30	
Styrene	ND	1.0	0		0	0		(0	30	
Tetrachloroethene	ND	1.0	0		0	0		() 0		
Toluene	ND	1.0	0		0	0		(0		

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: R344771a Instrum	nent ID VMS8		Method:	SW8260C						
trans-1,2-Dichloroethene	ND	1.0	0	0	0		0	0	30	
trans-1,3-Dichloropropene	ND	1.0	0	0	0		0	0	30	
Trichloroethene	ND	1.0	0	0	0		0	0	30	
Trichlorofluoromethane	ND	1.0	0	0	0		0	0	30	
Vinyl chloride	ND	1.0	0	0	0		0	0	30	
Xylenes, Total	ND	3.0	0	0	0		0	0	30	
Surr: 1,2-Dichloroethane-d4	19.48	0	20	0	97.4	75-120	21.21	8.5	30	
Surr: 4-Bromofluorobenzene	18.1	0	20	0	90.5	80-110	19.11	5.43	30	
Surr: Dibromofluoromethane	20.15	0	20	0	101	85-115	20.27	0.594	30	
Surr: Toluene-d8	19.52	0	20	0	97.6	85-110	20.6	5.38	30	

The following samples were analyzed in this batch:

22051511-01A	22051511-02A	22051511-03A	
22051511-04A	22051511-05A	22051511-06A	
22051511-07A	22051511-08A	22051511-09A	
22051511-10A	22051511-11A	22051511-12A	
22051511-14A	22051511-15A	22051511-16A	

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: R344778a Instrument ID VMS10 Method: SW8260C

MBLK	Sample ID: 10V-	BLKW1-220520-I	R344778a	1		Units: µg/L	-	Analys	is Date: 5/2	20/2022 12:09 PM		
Client ID:		Run ID	: VMS10	_220520A		SeqNo: 844	0296	Prep Date:		DF: 1		
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua	
	hana	ND	1.0									
1,1,1-Trichloroeth 1,1,2,2-Tetrachlo		ND	1.0									
1,1,2-Trichloroeth		ND	1.0									
1,1,2-Trichlorotrif		ND	1.0									
1,1-Dichloroethar		ND	1.0									
1,1-Dichloroether		ND	1.0									
1,2,4-Trichlorobe		ND	1.0									
1,2-Dibromo-3-ch		ND	1.0									
1,2-Dibromoetha		ND	1.0									
1,2-Dibromoetria		ND	1.0									
1,2-Dichloroethar		ND	1.0									
		ND ND	1.0									
1,2-Dichloropropa 1,3-Dichlorobenz		ND ND	1.0									
1,4-Dichlorobenz		ND	1.0									
•	terre	ND										
2-Butanone		ND ND	5.0 5.0									
2-Hexanone		ND ND	1.0									
4-Methyl-2-penta	inone	ND ND										
Acetone		ND ND	10									
Benzene Bromodichlorome	ath an a	ND ND	1.0 1.0									
Bromoform	emane	ND ND	1.0									
		ND ND	1.0									
Bromomethane Carbon disulfide		ND ND	1.0									
		ND ND										
Carbon tetrachlor	ride	ND ND	1.0									
Chlorobenzene		ND ND	1.0									
Chloroethane		ND ND	1.0									
Chloroform		ND ND	1.0									
Chloromethane	41	ND ND	1.0									
cis-1,2-Dichloroe		ND ND	1.0									
cis-1,3-Dichlorop	propene	ND ND	1.0									
Cyclohexane	-41		2.0									
Dibromochlorome		ND	1.0									
Dichlorodifluorom	nemane	ND ND	1.0									
Ethylbenzene		ND ND	1.0									
Isopropylbenzene	е	ND ND	1.0									
Methyl acetate	-41	ND	2.0									
Methyl tert-butyl		ND ND	1.0									
Methylcyclohexa		ND	1.0									
Methylene chlorid	de	ND	5.0									
Styrene		ND	1.0									
Tetrachloroethen	ne	ND	1.0									
Toluene		ND	1.0									

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: R344778a	Instrument ID VMS10		Method:	SW8260C			
trans-1,2-Dichloroethene	ND	1.0					
trans-1,3-Dichloropropene	ND	1.0					
Trichloroethene	ND	1.0					
Trichlorofluoromethane	ND	1.0					
Vinyl chloride	ND	1.0					
Xylenes, Total	ND	3.0					
Surr: 1,2-Dichloroethane-	d4 21.1	0	20	0	106	75-120	0
Surr: 4-Bromofluorobenze	ene 18.91	0	20	0	94.6	80-110	0
Surr: Dibromofluorometha	ane 19.7	0	20	0	98.5	85-115	0
Surr: Toluene-d8	20.06	0	20	0	100	85-110	0

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: R344778a Instrument ID VMS10 Method: SW8260C

LCS	Sample ID: 10V-LCS	SW1-220520-F	R344778a	1		U	Inits: µg/L		Analys	is Date: 5/2	0/2022 12:	26 PM
Client ID:		Run ID	VMS10	_220520A		Sec	qNo: 844 (0297	Prep Date:		DF: 1	
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
1,1,1-Trichloroethan	е	20.9	1.0	20		0	104	75-130		0		
1,1,2,2-Tetrachloroe		24.93	1.0	20		0	125	75-130		0		
1,1,2-Trichloroethan	e	21.44	1.0	20		0	107	75-125		0		
1,1,2-Trichlorotrifluo	roethane	21.92	1.0	20		0	110	50-150		0		
1,1-Dichloroethane		22.83	1.0	20		0	114	68-142		0		
1,1-Dichloroethene		24.22	1.0	20		0	121	70-145		0		
1,2,4-Trichlorobenze	ene	21.16	1.0	20		0	106	70-135		0		
1,2-Dibromo-3-chlor	opropane	20.31	1.0	20		0	102	60-130		0		
1,2-Dibromoethane		23.58	1.0	20		0	118	67-155		0		
1,2-Dichlorobenzene)	21.57	1.0	20		0	108	70-130		0		
1,2-Dichloroethane		22.96	1.0	20		0	115	78-125		0		
1,2-Dichloropropane	!	21.43	1.0	20		0	107	75-125		0		
1,3-Dichlorobenzene)	21.77	1.0	20		0	109	75-130		0		
1,4-Dichlorobenzene)	21.76	1.0	20		0	109	75-130		0		
2-Butanone		23.95	5.0	20		0	120	55-150		0		
2-Hexanone		24.39	5.0	20		0	122	60-135		0		
4-Methyl-2-pentanor	ne	31.87	1.0	20		0	159	77-178		0		
Acetone		30.15	10	20		0	151	60-160		0		
Benzene		22.07	1.0	20		0	110	70-130		0		
Bromodichlorometha	ane	20.87	1.0	20		0	104	75-125		0		
Bromoform		18.43	1.0	20		0	92.2	60-125		0		
Bromomethane		23.71	1.0	20		0	119	30-185		0		
Carbon disulfide		22.17	1.0	20		0	111	60-165		0		
Carbon tetrachloride	!	19.75	1.0	20		0	98.8	65-140		0		
Chlorobenzene		21.34	1.0	20		0	107	80-120		0		
Chloroethane		21.18	1.0	20		0	106	31-172		0		
Chloroform		22.16	1.0	20		0	111	66-135		0		
Chloromethane		14.85	1.0	20		0	74.2	46-148		0		
cis-1,2-Dichloroethe	ne	22.56	1.0	20		0	113	75-134		0		
cis-1,3-Dichloroprop	ene	21.96	1.0	20		0	110	70-130		0		
Cyclohexane		20.08	2.0	20		0	100	50-150		0		
Dibromochlorometha	ane	18.93	1.0	20		0	94.6	60-115		0		
Dichlorodifluorometh	nane	19.32	1.0	20		0	96.6	10-180		0		
Ethylbenzene		21.21	1.0	20		0	106	76-123		0		
Isopropylbenzene		21.72	1.0	20		0	109	80-127		0		
Methyl tert-butyl ethe	er	23.26	1.0	20	-	0	116	68-129		0		
Methylcyclohexane		19.52	1.0	20		0	97.6	50-150		0		
Methylene chloride		22.02	5.0	20		0	110	72-125		0		
Styrene		21.22	1.0	20		0	106	79-117		0		
Tetrachloroethene		21.38	1.0	20		0	107	68-166		0		
Toluene		21.24	1.0	20		0	106	76-125		0		
trans-1,2-Dichloroeth	nene	22.87	1.0	20		0	114	80-140		0		

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: R344778a	Instrument ID VMS10		Method:	SW8260C			
trans-1,3-Dichloropropene	17.91	1.0	20	0	89.6	56-132	0
Trichloroethene	20.47	1.0	20	0	102	77-125	0
Trichlorofluoromethane	19.68	1.0	20	0	98.4	60-140	0
Vinyl chloride	19.51	1.0	20	0	97.6	50-136	0
Xylenes, Total	64.75	3.0	60	0	108	76-127	0
Surr: 1,2-Dichloroethan	e-d4 21.03	0	20	0	105	75-120	0
Surr: 4-Bromofluoroben	zene 19.66	0	20	0	98.3	80-110	0
Surr: Dibromofluoromet	hane 20.67	0	20	0	103	85-115	0
Surr: Toluene-d8	19.95	0	20	0	99.8	85-110	0

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: R344778a Instrument ID VMS10 Method: SW8260C

MS	Sample ID: 2205	1315-04A MS				Units: µg/l	L	Analysi	s Date: 5/2	0/2022 06:53 PM		
Client ID:		Run ID	: VMS10	_220520A		SeqNo: 844	2341	Prep Date:		DF: 10)	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua	
•							75.400					
1,1,1-Trichloroeth		216.2	10	200		0 108	75-130	C				
1,1,2,2-Tetrachlo		225.3 202.8	10	200		0 113	75-130	C				
1,1,2-Trichloroeth			10	200		0 101	75-125					
1,1,2-Trichlorotrifl		247.8 219.8	10	200		0 124	50-150	C				
1,1-Dichloroethar		259.7	10	200		0 110	68-142	C				
1,1-Dichloroether		187.2	10	200		0 130	70-145 70-135	C				
1,2,4-Trichlorobei		191.6		200		0 93.6						
1,2-Dibromo-3-ch		218.7	10			0 95.8	60-130	C				
1,2-Dibromoethar		198	10 10	200		0 109 0 99	67-155	C				
1,2-Dichlorobenzon, 1,2-Dichloroethar		211.1	10	200		0 99 0 106	70-130 78-125	C				
•		200.2		200			76-125 75-125					
1,2-Dichloropropa 1.3-Dichlorobenzo		200.2	10 10	200		0 100 0 102	75-125	C				
, -		204.8	10	200		0 102 0 101	75-130 75-130	C				
1,4-Dichlorobenze 2-Butanone	ene	202.3	50	200		0 101		C				
		229.2					55-150	C				
2-Hexanone		302.4	50 10	200			60-135 77-178					
4-Methyl-2-pentai	ione	285.8	100	200 200								
Acetone		203.6	100	200	32.		60-160 70-130	C				
Benzene Bromodichlorome	thana	198.2						C				
Bromoform	etriarie	185.4	10	200		0 99.1 0 92.7	75-125 60-125					
Bromomethane		429.2	10	200 200		0 92.7	30-125				s	
Carbon disulfide		238.3	10	200		0 119	60-165				3	
Carbon distillide Carbon tetrachlor	ido	206.5	10	200		0 103	65-140	0				
Carbon tetracillor Chlorobenzene	ide	206.5	10	200		0 103	80-120	0				
Chloroethane		254.7	10	200		0 103	31-172	0				
Chloroform		208.3	10	200		0 127	66-135					
Chloromethane		287.4	10	200	6.:		46-148	C				
cis-1,2-Dichloroet	hene	222.5	10	200		0 111	75-134					
cis-1,2-Dichloroet		209.8	10	200		0 105	70-130					
Cyclohexane	орене	218	20	200		0 109	50-150					
Dibromochlorome	athane	185	10	200		0 92.5	60-115					
Dichlorodifluorom		225.9	10	200		0 92.3	10-180					
Ethylbenzene	Citatio	211.4	10	200	1.4		76-123					
Euryiberizerie Isopropylbenzene	.	216.3	10	200		0 108	80-127					
Methyl tert-butyl e		210.3	10	200		0 106	68-129					
Methylcyclohexar		208.4	10	200		0 104	50-129					
Methylene chlorid		213.7	50	200		0 104	72-125					
Styrene		202.3	10	200		0 107	72-125					
Styrene Tetrachloroethen	a	202.3	10	200		0 101	68-166					
Toluene	<u>-</u>	207.7	10	200		0 104	76-125					
i Oluci iC		201.1	10	200	,	0 104	10-125	C	,			

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: R344778a	Instrument ID VMS10		Method	SW8260C			
trans-1,3-Dichloropropene	173.5	10	200	0	86.8	56-132	0
Trichloroethene	199.9	10	200	0	100	77-125	0
Trichlorofluoromethane	225.8	10	200	0	113	60-140	0
Vinyl chloride	235.1	10	200	0	118	50-136	0
Xylenes, Total	641.8	30	600	0	107	76-127	0
Surr: 1,2-Dichloroethane	e-d4 203.5	0	200	0	102	75-120	0
Surr: 4-Bromofluorobenz	zene 203.6	0	200	0	102	80-110	0
Surr: Dibromofluorometh	nane 199.4	0	200	0	99.7	85-115	0
Surr: Toluene-d8	203.1	0	200	0	102	85-110	0

Client: The Mannik & Smith Group, Inc.

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: R344778a Instrument ID VMS10 Method: SW8260C

MSD	Sample ID: 2205	1315-04A MSD				Jnits: μg/l	•	Analysis	Date: 5/20	/2022 07:	10 PM
Client ID:		Run ID	: VMS10	_220520A	Se	eqNo: 844	2342	Prep Date:		DF: 10	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
4 4 4 Triableses		204.8	40	200	0	400	75 400	246.2	F 40	20	
1,1,1-Trichloroeth		218.9	10	200	0	102	75-130	216.2	5.42	30	
1,1,2,2-Tetrachlo		191.6	10	200	0	109	75-130	225.3	2.88	30	
1,1,2-Trichloroeth		226.7	10	200	0	95.8 113	75-125 50-150	202.8	5.68 8.89	30	
		207.5	10	200	0	104	68-142	219.8	5.76	30	
1,1-Dichloroethar		242.3			0		70-145				
1,1-Dichloroether		183.5	10	200 200		121	70-145	259.7 187.2	6.93	30 30	
1,2,4-Trichlorobe		183.9	10		0	91.8			2		
1,2-Dibromo-3-ch		207.9	10	200	0	92	60-130	191.6	4.1	30	
1,2-Dibromoetha		194.7	10	200	0	104	67-155	218.7	5.06	30	
1,2-Dichlorobenz			10	200	0	97.4	70-130	198	1.68	30	
1,2-Dichloroethar		201.9	10	200	0	101	78-125	211.1	4.46	30	
1,2-Dichloropropa		189.1	10	200	0	94.6	75-125	200.2	5.7	30	
1,3-Dichlorobenz		198.1	10	200	0	99	75-130	204.8	3.33	30	
1,4-Dichlorobenz	ene	192.8	10	200	0	96.4	75-130	202.3	4.81	30	
2-Butanone		215.5	50	200	0	108	55-150	225.6	4.58	30	
2-Hexanone		218.2	50	200	0	109	60-135	229.2	4.92	30	
4-Methyl-2-penta	none	291.4	10	200	0	146	77-178	302.4	3.7	30	
Acetone -		278.5	100	200	32.9	123	60-160	285.8	2.59	30	
Benzene		201.7	10	200	0	101	70-130	211.5	4.74	30	
Bromodichlorome	ethane	191.7	10	200	0	95.8	75-125	198.2	3.33	30	
Bromoform		174.2	10	200	0	87.1	60-125	185.4	6.23	30	
Bromomethane		483.3	10	200	0	242	30-185	429.2	11.9	30	S
Carbon disulfide		275	10	200	0	138	60-165	238.3	14.3	30	
Carbon tetrachlo	ride	204.4	10	200	0	102	65-140	206.5	1.02	30	
Chlorobenzene		193.4	10	200	0	96.7	80-120	206.5	6.55	30	
Chloroethane		241.2	10	200	0	121	31-172	254.7	5.44	30	
Chloroform		197.8	10	200	0	98.9	66-135	208.3	5.17	30	
Chloromethane		278.1	10	200	6.3	136	46-148	287.4	3.29	30	
cis-1,2-Dichloroe		210.7	10	200	0	105	75-134	222.5	5.45	30	
cis-1,3-Dichlorop	ropene	199.6	10	200	0	99.8	70-130	209.8	4.98	30	
Cyclohexane		209.4	20	200	0	105	50-150	218	4.02	30	
Dibromochlorome		185.4	10	200	0	92.7	60-115	185	0.216	30	
Dichlorodifluorom	nethane	216.2	10	200	0	108	10-180	225.9	4.39	30	
Ethylbenzene		197.3	10	200	1.4	98	76-123	211.4	6.9	30	
Isopropylbenzene		203.1	10	200	0	102	80-127	216.3	6.29	30	
Methyl tert-butyl	ether	210.4	10	200	0	105	68-129	222.4	5.55	30	
Methylcyclohexa	ne	200.5	10	200	0	100	50-150	208.4	3.86	30	
Methylene chlorid	de	203.1	50	200	0	102	72-125	213.7	5.09	30	
Styrene		190.5	10	200	0	95.2	79-117	202.3	6.01	30	
Tetrachloroethen	e	206.5	10	200	0	103	68-166	221.9	7.19	30	
Toluene		196	10	200	0	98	76-125	207.7	5.8	30	
trans-1,2-Dichlor	oethene	209.4	10	200	0	105	80-140	219.7	4.8	30	

Work Order: 22051511

Project: Former Mount Pleasant Landfill

Batch ID: R344778a Instrume	nt ID VMS10		Method:	SW8260C					
trans-1,3-Dichloropropene	167.3	10	200	0	83.6	56-132	173.5	3.64	30
Trichloroethene	186.8	10	200	0	93.4	77-125	199.9	6.78	30
Trichlorofluoromethane	207.4	10	200	0	104	60-140	225.8	8.49	30
Vinyl chloride	213.8	10	200	0	107	50-136	235.1	9.49	30
Xylenes, Total	598.9	30	600	0	99.8	76-127	641.8	6.92	30
Surr: 1,2-Dichloroethane-d4	201.3	0	200	0	101	75-120	203.5	1.09	30
Surr: 4-Bromofluorobenzene	197.3	0	200	0	98.6	80-110	203.6	3.14	30
Surr: Dibromofluoromethane	196.9	0	200	0	98.4	85-115	199.4	1.26	30
Surr: Toluene-d8	198.2	0	200	0	99.1	85-110	203.1	2.44	30

The following samples were analyzed in this batch:

22051511-08A

MOTALS- 10 MICH MOTALS + AL, Sb, Be, B.N. ATTALLED South Charleston, WV +1 304 356 3168 York, PA +1 717 505 5280 7 PFAS - ISTOPE DILVADA- SEE Parameter/Method Request for Analysis Results Due Date: Spring City, PA +1 610 948 4903 Salt Lake City, UT +1 801 266 7700 I ALS Work Order #: O STRADARD LL. 151 - EGLE C18D ш Houston, TX +1 281 530 5656 Middletown, PA +1 717 944 5541 Δ SVOCS 2002 □2BD O Furnaround Time in Business Days (BD 00 3 BD Chain of Custody Form 057206 ⋖ O Ω ~ A \mathbf{m} エ (4) ALS Project Manager: # Bottles MT. PLEASINGT LAND PILL 9 □ 5 BD of MANNIL YSMITH Pres. COC ID: □ 10 BD M346 0003 Page __ Project Information D. ADLER OWNON CROWN WATCH Matrix 1342 944 1249 1302 1645 1553 1555 014 1500 Shipment Method land, Mi 616 399 6070 Fort Collins, CO 970 490 1511 eject Name Phone Fax regect Number Bill To Company Invoice Attn City/State/Zip Address e-Mail Address 5-16-22 5-16-22 Date 2365 NACECARY PO. SOUTA MANNIK YSMITH (CANTON) Cincinnati, OH 10-20 CANDON MI 48188 SMITHGROUPS COM DAQUER D MANNIK MANNIK&SMITH: The Mannik & Smith Group, Inc. 734 7905/64 Project: Former Mount Pleasant Landfill ME 22051511 Sample Description D. ADVER at de MW-106 401-MW Sampler(s) Please Print & Sign MW-200 101-WH MW-103 701-MM 702-MM MW-105 102-MM ACH Send Report To Company Name Phone Work Order Address e-Mail Address City/State/Zip S. N 9 3 4 S 9 / ∞ 0

Hold

Note: 1. Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental.
2. Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse.
3. The Chain of Custody is a legal document. All information must be completed accurately.

Copyright 2011 by ALS Environmental.

☐ TRRP Checklist ☐ TRRP Level IV

☐ Level III Std QC/Raw Date ☐ Level IV SW846/CLP

Other

5 mm

日27

9-5035

8-4°C

7-Other

6-NaHSO4

5-Na, S, O3

4-NaOH

2-HNO3

1-HC

Preservative Key:

Logged by (Laboratory):

Relinquished by: Relinquished b

Checked by (Laboratory):

Received by (Laboratory):

Received by:

Lh&du

☐ Level II Std QC

QC Package: (Check One Box Below)

Cooler Temp.

Cooler ID

Notes:

MANNIK YSMITH-D. NOWER MEMUS - 10 MICH + AL, 56, BE, B, NI, Th South Charleston, WV +1 304 356 3168 PFAS- ISOTOPE DILUTION - SEE NATIONAL Hold York, PA +1 717 505 5280 ☐ TRRP Level IV Parameter/Method Request for Analysis Results Due Date: LIST- EGUE 10/1/2019 QC Package: (Check One Box Below) Salt Lake City, UT +1 801 266 7700 Spring City, PA +1 610 948 4903 I ☐ Level III Std QC/Raw Date ALS Work Order #: ☐ Level IV SW846/CLP G ☐ Level II Std QC 12. STANDARD 0180 ш Houston, TX +1 281 530 5656 Middletown, PA +1 717 944 5541 Cooler Temp. ۵ □ 2 BD Svacs PCBS X O VOCS Turnaround Time in Business Days (BD) m Cooler ID 3 BD **Chain of Custody Form** Notes: 057205 8 < LANDRILL B O шш --O I 7 ALS Project Manager: # Bottles 0 ☐ 5 BD 0 N 0 Page Z of Z Pres. COC ID: □ 10 BD MT. PLENSANT M346 0003 **Project Information** LAND LAND GROWN WATCH Spran STO1 Matrix 30 Received by (Laboratory): Checked by (Laboratory): 1545 5-16-22 1055 Received by: Shipment Method MI 99 6070 Fort Collins, CO Name Invoice Attn Phone amber MANNIK YSMITAL-CANTON Bill To Company Fax Address City/State/Zip e-Mail Address 5-16-22 5-16-22 5-16-22 Lime: 447 Time: Date Cincinnati, OH MANNIK&SMITH: The Mannik & Smith Group, Inc. 5/8 3-HSO Project: Former Mount Pleasant Landfill FIELD BLANK 22051511 7347905164 Sample Description D. ADLER DADLERAM TAM BLANK MW-14-20 NW-15-20 MW-IOG Sampler(s) Please Print & Sign DUP Logged by (Laboratory): , ADVER Company Name Send Report To Phone Work Order e-Mail Address Address City/State/Zip Relinquished by: Relinquished Purc

S.

N က 4 S 9 ~ ∞ O 9 Note: 1. Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental.
2. Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse.
3. The Chain of Custody is a legal document. All information must be completed accurately.

Copyright 2011 by ALS Environmental.

☐ Other

9-5035

8-4°C

7-Other

6-NaHSO

5-Na,S,O3

4-NaOH

2-HNO₃

1-HCI

Preservative Key:

Sample Receipt Checklist

Client Name: N	MANNIK&SMITH				Date/Time F	Received:	<u>17-</u>	May-22	<u>23:50</u>	
Work Order: 2	<u> 22051511</u>				Received by	/ :	LYS	<u> </u>		
Checklist comple		1	8-May-22	_ F	Reviewed by:					
• • • •	eSignature		Date			eSignature				Date
Matrices: Carrier name:	Water Courier									
Shipping contained	er/cooler in good condition?		Yes	✓	No 🗌	Not Pre	esent			
Custody seals int	act on shipping container/coole	r?	Yes		No 🗌	Not Pre	esent	✓		
Custody seals int	act on sample bottles?		Yes		No 🗌	Not Pre	esent	✓		
Chain of custody	present?		Yes	✓	No 🗌					
Chain of custody	signed when relinquished and r	eceived?	Yes	✓	No 🗌					
Chain of custody	agrees with sample labels?		Yes	✓	No 🗌					
Samples in prope	er container/bottle?		Yes	✓	No 🗌					
Sample container	rs intact?		Yes	✓	No 🗌					
Sufficient sample	volume for indicated test?		Yes	✓	No 🗌					
All samples recei	ved within holding time?		Yes	✓	No 🗌					
Container/Temp I	Blank temperature in complianc	e?	Yes	~	No 🗌					
Sample(s) receive	ed on ice?		Yes		No 🗌					
Temperature(s)/T	hermometer(s):		3.0/3.0	, 3.2/3	3.2, 4.6/4.6c	<u>II</u>	7 1			
Cooler(s)/Kit(s):										
Date/Time sample	e(s) sent to storage:		5/18/20	22 10):56:15 AM					
Water - VOA vials	s have zero headspace?		Yes	~	No	No VOA via	als sub	mitted		
Water - pH accep	otable upon receipt?		Yes	✓		N/A				
pH adjusted? pH adjusted by:			Yes		No 🗹	N/A				
Login Notes:										
										 - — — -
										 - — — -
Client Contacted:		Date Contacted:			Person	Contacted:				
Contacted By:		Regarding:								
Comments:										
CorrectiveAction:										
									_	 4 . 6 4

PERFLUOROALKYL AND POLYFLUOROALKYL SUBSTANCES (PFAS) MINIMUM LABORATORY ANALYTE LIST

Below is the minimum laboratory PFAS analyte list for analysis of deer, drinking water, groundwater, surface water, soil, wastewater effluent, and landfill leachate samples collected by Michigan's Departments of Environment, Great Lakes, and Energy, Health and Human Services, Agriculture and Rural Development, and Natural Resources.

This minimum analyte list was developed based on the potential for these chemicals to be found in Michigan, the availability of the chemical standards used for testing, and the ability of available laboratories to test for these PFAS. This list includes PFAS that can be tested for in drinking water using United States Environmental Protection Agency (USEPA) Methods 537 Rev.1.1 or 537.1, which are the only methods that should be used when analyzing drinking water samples. Other testing methodology may be used to test for PFAS in other media (not drinking water). This list is not exhaustive of PFAS in Michigan's environment.

A fish icon () precedes those compounds that are also currently being tested for in fish tissue.

Analyte Name	Acronym	Fluorinated Carbon Chain Length	Molecular Formula	CAS Number	USEPA Method 537 Rev. 1.1	USEPA Method 537.1
Perfluorotetradecanoic acid	PFTeA	C ₁₄	C ₁₃ F ₂₇ COOH	376-06-7	X	X
Perfluorotridecanoic acid	PFTriA	C ₁₃	C ₁₂ F ₂₅ COOH	72629-94-8	X	Х
Perfluorododecanoic acid	PFDoA	C ₁₂	C ₁₁ F ₂₃ COOH	307-55-1	X	X
Perfluoroundecanoic acid	PFUnA	C ₁₁	C ₁₀ F ₂₁ COOH	2058-94-8	X	Х
Perfluorodecanoic acid	PFDA	C ₁₀	C ₉ F ₁₉ COOH	335-76-2	X	X
Perfluorononanoic acid	PFNA	C ₉	C ₈ F ₁₇ COOH	375-95-1	X	Х
Perfluorooctanoic acid	PFOA	C ₈	C ₇ F ₁₅ COOH	335-67-1	x	X
Perfluoroheptanoic acid	PFHpA	C ₇	C ₆ F ₁₃ COOH	375-85-9	x	Х
Perfluorohexanoic acid	PFHxA	C ₆	C ₅ F ₁₁ COOH	307-24-4	X	X
Perfluoropentanoic acid	PFPeA	C ₅	C ₄ F ₉ COOH	2706-90-3		
Perfluorobutanoic acid	PFBA	C ₄	C₃F ₇ COOH	375-22-4		
Perfluorodecanesulfonic acid	PFDS	C ₁₀	C ₁₀ F ₂₁ SO ₃ H	335-77-3		

EGLE Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) Minimum Laboratory Analyte List

Analyte Name	Acronym	Fluorinated Carbon Chain Length	Molecular Formula	CAS Number	USEPA Method 537 Rev. 1.1	USEPA Method 537.1
Perfluorononanesulfonic acid	PFNS	C ₉	C ₉ F ₁₉ SO ₃ H	68259-12-1		
Perfluorooctanesulfonic acid	PFOS	C ₈	C ₈ F ₁₇ SO ₃ H	1763-23-1	X	×
Perfluoroheptanesulfonic acid	PFHpS	C ₇	C ₇ F ₁₅ SO ₃ H	375-92-8		
Perfluorohexanesulfonic acid	PFHxS	C ₆	C ₆ F ₁₃ SO ₃ H	355-46-4	X	Х
Perfluoropentanesulfonic acid	PFPeS	C ₅	C ₅ F ₁₁ SO ₃ H	2706-91-4		
Perfluorobutanesulfonic acid	PFBS	C ₄	C ₄ F ₉ SO ₃ H	375-73-5	Х	Х
Perfluorooctanesulfonamide	PFOSA	C ₈	C ₈ F ₁₇ SO ₂ NH ₂	754-91-6		
Fluorotelomer sulphonic acid 8:2	FtS 8:2	C ₈	C ₈ F ₁₇ CH ₂ CH ₂ SO ₃	39108-34-4		
Fluorotelomer sulphonic acid 6:2	FtS 6:2	C ₆	C ₆ F ₁₃ CH ₂ CH ₂ SO ₃	27619-97-2		
Fluorotelomer sulphonic acid 4:2	FtS 4:2	C ₄	C ₄ F ₉ CH ₂ CH ₂ SO ₃	757124-72-4		
2-(N- Ethylperfluorooctanesulfonamido) acetic acid	N-EtFOSAA	C ₈	C ₈ F ₁₇ SO ₂ N(C ₂ H ₅)CH ₂ COOH	2991-50-6	X	Х
2-(N- Methylperfluorooctanesulfonamido) acetic acid	N-MeFOSAA	C ₈	C ₈ F ₁₇ SO ₂ N(CH ₃)CHCOOH	2355-31-9	X	х
Hexafluoropropylene oxide dimer acid	HFPO-DA	C ₆	C ₆ HF ₁₁ O ₃	13252-13-6		Х
11-chloroeicosafluoro-3- oxaundecane-1-sulfonic acid	11CI-PF3OUdS	C ₁₀	C ₁₀ HF ₂₀ CISO ₄	763051-92-9		х
9-chlorohexadecafluoro-3-oxanone- 1-sulfonic acid	9CI-PF3ONS	C ₈	C ₈ HF ₁₆ CISO ₄	756426-58-1		Х
4,8-dioxa-3H-perfluorononanoic acid	ADONA	C ₇	C ₇ H ₂ F ₁₂ O ₄	919005-14-4		Х

APPENDIX E SOIL SAMPLE TEST DATA

CLIENT City of Mt. Pleasant, MI

The Mannik & Smith Group, Inc. 2365 Haggerty Road South, Canton, MI 48188 ph: (734) 397-3100 fax: (734) 397-3131 www.manniksmithgroup.com

SUMMARY OF LABORATORY RESULTS

PAGE 1 OF 1

PROJECT NAME Former Mt Pleasant Landfill

ROJECT NUMBER	M3460003	PROJECT LOCATION	Mt. Pleasant, MI
---------------	----------	------------------	------------------

Boring No. / Sample No.	Depth	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<#200 Sieve	Class- ification	Water Content (%)	Bulk Density (pcf)	Satur- ation (%)	Specific Gravity
MW-200 / 17-20	17.0	NP	NP	NP	25	4	SP				
MW-200 / 25.5-30	25.5	31	14	17	4.75	95	CL				
MW-200 / 37-39.5	37.0	23	11	12	9.525	63	CL				
MW-201 / 20-24	20.0	NP	NP	NP	19	16	SM				
MW-201 / 29-30	29.0	33	16	17	4.75	99	CL				
MW-201 / 39-40	39.0	17	10	7	9.525	49	SC-SM				
MW-202 / 5-7	5.0	NP	NP	NP	25	2	GW				
MW-202 / 8.5-10	8.5	20	10	10	4.75	55	CL				
SB-19 / 34-35	34.0	17	9	8	4.75	49	SC				
SB-19 / 47-49	47.0	19	10	9	9.525	56	CL				
SB-20 / 45-50	45.0	19	10	9	9.525	55	CL				
SB-21 / 23-25	23.0	20	10	10	19	55	CL				

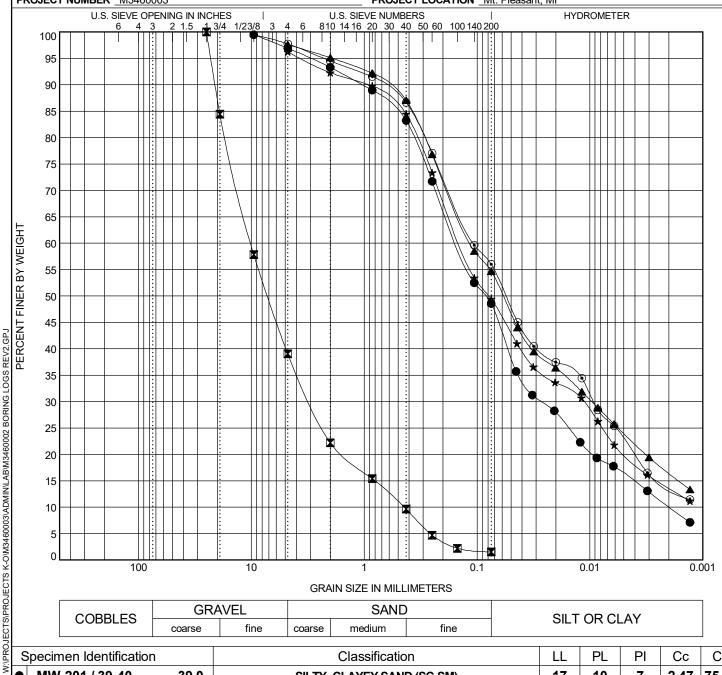
The Mannik & Smith Group, Inc. 2365 Haggerty Road South, Canton, MI 48188 ph: (734) 397-3100 fax: (734) 397-3131 www.manniksmithgroup.com

GRAIN SIZE DISTRIBUTION

PROJECT NAME Former Mt Pleasant Landfill CLIENT City of Mt. Pleasant, MI

PROJECT NUMBER M3460003 PROJECT LOCATION Mt. Pleasant, MI U.S. SIEVE OPENING IN INCHES U.S. SIEVE NUMBERS HYDROMETER 3 810 14 16 20 30 40 50 60 1/23/8 100 140 200 100 95 90 Ø 85 80 75 70 65 PERCENT FINER BY WEIGHT 60 55 50 45 40 35 30 25 20 15 10 5 100 0.1 0.01 0.001 **GRAIN SIZE IN MILLIMETERS GRAVEL** SAND **COBBLES** SILT OR CLAY fine medium fine coarse coarse

REV2.GPJ PERCENT	45													
REV2.	40										lack lac			1
ogs	35													-
SING L	30							<u> </u>					1/>	
2 BOF	25											$\perp \downarrow \downarrow$		H
46000	20													
AB/M3														
MIN/L	15							•					*	
)3/ADI	10													1
346000	5													-
(-O/M3	0		100		10						 0.01			<u>]</u> 001
CTS			100		10	GRAII	ı N SIZE IN MILL		0.1		0.01		U.	001
ROJE				GR	AVEL		SAND							
WAPROJECTS/PROJECTS K-OW3460003/ADMINILABW3460002 BORING LOGS REV2.GPJ		COE	BLES	coarse	fine	coarse	medium	fine		SILT	OR C	LAY		
PROJ	Specin	nen Ide	ntification	<u> </u>			Classification	on		LL	PL	PI	Сс	Cu
3- W.	MW	/-200 / 1	17-20	17.0	POC	ORLY GRA	DED SAND w	ith GRAVEL	(SP)	NP	NP	NP	0.18	21.30
88:1			25.5-30	25.5			LEAN CLAY (31	14	17		
7/15/22			37-39.5	37.0			DY LEAN CL			23	11	12		
.GDT		/-201 / 2 /-201 / 2		20.0			SILTY SAND (-		NP 33	NP 16	NP 17		
AB.			ntification		D100	D60	EAN CLAY (D10	%Gravel	%San		%Silt	0/6	⊥ Clay
STD US		/-200 / 1		17.0	25	4.026	0.366	0.189	37.7	58.3			4.0	Olay
GINTST		/-200 / 2		25.5	4.75	0.009	0.002		1	5.1		62.8		31.7
ு் ▲	MW	/-200 / 3	37-39.5	37.0	9.525	0.068	0.005		1.1	36.1		44.4	1	8.4
GRAIN SIZ		/-201 / 2		20.0	19	0.215	0.144		0.5	83.6			15.9	
8 ⊙	MW	/-201 / 2	29-30	29.0	4.75	0.006	0.001			1.1		61.9	3	6.9



The Mannik & Smith Group, Inc. 2365 Haggerty Road South, Canton, MI 48188 ph: (734) 397-3100 fax: (734) 397-3131 www.manniksmithgroup.com

GRAIN SIZE DISTRIBUTION

PROJECT NAME Former Mt Pleasant Landfill CLIENT City of Mt. Pleasant, MI PROJECT NUMBER M3460003 PROJECT LOCATION Mt. Pleasant, MI

GRAIN SIZE IN MILLIMETERS

COPPLES	GRA	VEL		SAND)	SILT OR CLAY
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAT

 PR	Specimen Identification			(Classificatio	LL	PL	PI	Сс	Cu		
08:13 - W:\PRC	MW-201 / 39-40	39.0		SILTY, C	LAYEY SAN	17	10	7	2.47	75.13		
08:1	MW-202 / 5-7	5.0	W	WELL-GRADED GRAVEL with SAND (GW)							1.99	22.71
7/15/22	MW-202 / 8.5-10	8.5		SAND	Y LEAN CLA	AY (CL)		20	10	10		
<u> </u>	SB-19 / 34-35	34.0		CL	AYEY SAND	(SC)		17	9	8		
AB.GDI -	SB-19 / 47-49	47.0		SAND	Y LEAN CLA	AY (CL)		19	10	9		
<u>₹</u>	Specimen Identification		D100	D60	D30	D10	%Gravel	%San	d	%Silt	%	Clay
310.03.	MW-201 / 39-40	39.0	9.525	0.148	0.027	0.002	2.6	48.4		38.5	1	0.1
	MW-202 / 5-7	5.0	25	10.07	2.984	0.443	61.0	37.5			1.5	
ت ابن ا	MW-202 / 8.5-10	8.5	4.75	4.75 0.114 0.01						38.2	1	6.5
7 7	SB-19 / 34-35	34.0	4.75 0.14 0.011				46.8		35.8	1	3.6	
GRAIN SIZE - (SB-19 / 47-49	47.0	9.525	9.525 0.108 0.009 1.7						42.1	1	4.0

The Mannik & Smith Group, Inc. 2365 Haggerty Road South, Canton, MI 48188 ph: (734) 397-3100 fax: (734) 397-3131 www.manniksmithgroup.com

GRAIN SIZE DISTRIBUTION

www.manniksmithgroup.com PROJECT NAME Former Mt Pleasant Landfill CLIENT _City of Mt. Pleasant, MI PROJECT NUMBER M3460003 PROJECT LOCATION Mt. Pleasant, MI U.S. SIEVE OPENING IN INCHES U.S. SIEVE NUMBERS HYDROMETER 1/23/8 810 1416 20 30 40 50 60 100 140 200 100 95 90 85 80 75 70 65 PERCENT FINER BY WEIGHT 60 55 50 45 13 - W:\PROJECTS\PROJECTS K-O\M3460003\ADMIN\LAB\M3460002 BORING LOGS REV2.GPJ 40 35 30 25 20 15 10 5 0.01 0.001 **GRAIN SIZE IN MILLIMETERS GRAVEL** SAND **COBBLES** SILT OR CLAY fine medium fine coarse coarse LL PL Specimen Identification Classification Ы Сс Cu SB-20 / 45-50 45.0 SANDY LEAN CLAY (CL) 19 10 9 98 SB-21 / 23-25 23.0 10 \mathbf{X} **SANDY LEAN CLAY (CL)** 20 10 - 7/15/22

GRAIN SIZE - GINT STD US LAB.GDT

 \blacksquare

Specimen Identification

SB-20 / 45-50

SB-21 / 23-25

D100

9.525

19

45.0

23.0

D60

0.113

0.111

D30

0.011

0.012

D10

%Gravel

3.4

2.6

%Sand

41.0

42.4

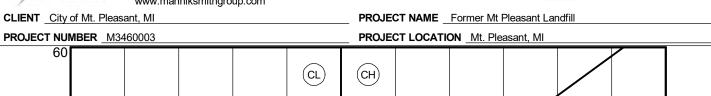
%Silt

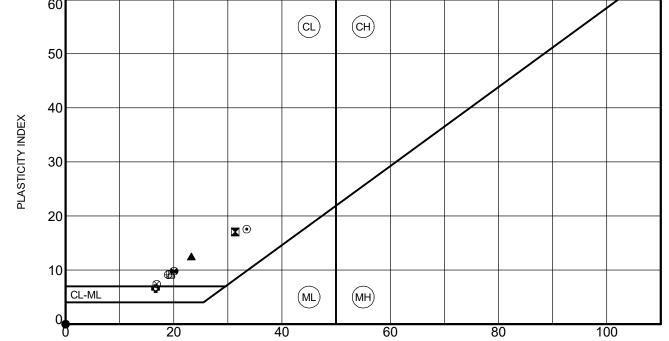
38.7

39.5

%Clay

16.0


15.6



The Mannik & Smith Group, Inc. 2365 Haggerty Road South, Canton, MI 48188 ph: (734) 397-3100 fax: (734) 397-3131 www.manniksmithgroup.com

ATTERBERG LIMITS RESULTS

LIQUID LIMIT

	Specimen Identifica	ition	LL	PL	PI	Fines	Classification
•	MW-200 / 17-20	17.0	NP	NP	NP	4	POORLY GRADED SAND with GRAVEL (SP)
X	MW-200 / 25.5-30	25.5	31	14	17	95	LEAN CLAY (CL)
<u> </u>	MW-200 / 37-39.5	37.0	23	11	12	63	SANDY LEAN CLAY (CL)
*	MW-201 / 20-24	20.0	NP	NP	NP	16	SILTY SAND (SM)
•	MW-201 / 29-30	29.0	33	16	17	99	LEAN CLAY (CL)
o	MW-201 / 39-40	39.0	17	10	7	49	SILTY, CLAYEY SAND (SC-SM)
0	MW-202 / 5-7	5.0	NP	NP	NP	2	WELL-GRADED GRAVEL with SAND (GW)
Δ	MW-202 / 8.5-10	8.5	20	10	10	55	SANDY LEAN CLAY (CL)
8	SB-19 / 34-35	34.0	17	9	8	49	CLAYEY SAND (SC)
∌	SB-19 / 47-49	47.0	19	10	9	56	SANDY LEAN CLAY (CL)
	SB-20 / 45-50	45.0	19	10	9	55	SANDY LEAN CLAY (CL)
0	SB-21 / 23-25	23.0	20	10	10	55	SANDY LEAN CLAY (CL)

W:\PROJECTS\PROJECTS K-O\M3460003\ADMIN\LAB\M3460002 BORING LOGS REV2.GPJ

Overview

Project Name

City Hall Retaining Wall - Broadway Street Sidewalk Replacement

Total Requested

\$70,000.00

(amount based on the Itemized Budget total)

Applicant Project Priority

Medium

Reocurring Need?

Not Reocurring

Applicant Information

Applicant Name

jmoore@mt-pleasant.org

Applicant Email

Jason Moore

Organization

City of MtPleasant

Address

320 W Broadway St MOUNT PLEASANT , 48858

Phone Number

9897795405

Organization Information

Primary Organization

City of Mt. Pleasant

Authorizers

adesentz@mt-pleasant.org

Status

Review

Address

320 W. Broadway

Mount Pleasant, Michigan 48858

Phone

(989) 779-5300

Fax

Categories

Infrastructure

Project Description

The retaining walls along the front side of the Borden Building/City Hall are part of the original construction and were deemed as having historic significance during the redevelopment by the State Historic Preservation Office. As a result, the walls were repaired and underpinned during the project rather than being replaced. The walls, which have been patched and repainted on a semiannual basis, continue to show signs of severe cracking.

In late 2021, staff contracted with SME, who provided the recommendation/engineering work for the original restoration, to evaluate movement evident along the west side of the site along the public sidewalk. Staff received SME's finding in early 2021 that outlined a number of options to improve the condition and overall appearance of the walls with updated drainage and coatings, along with a cost estimate to replace the wall/s in their entirety. The retaining walls that run along the west side of the site with a height of 2-4 feet above

grade are leaning and were determined that they need to be replaced along with the sidewalk that is failing.

The funding request is to cover the replacement of the public sidewalk along Broadway Street.

Benefit Description

The retaining walls are more than 100 years old and have been showing signs of cracking, spalling and areas where the wall is leaning causing the sidewalk to fail. This project will replace the sidewalk and protect the street and streetscape from potential damage.

Funding Requirements

Not Entered

Project Timeline

Summer of 2024

Budget Items

Name	Cost	Quantity	Total	Category
Sidewalk Replacement	\$70,000.00	1	\$70,000.00	Infrastructure
AmountRequested	\$70,000.00			

Matching Funds

Name	Cost	Quantity	Total
No Matching Funds items have been added.			
AmountMatched	\$0.00		

Budget Summary

Amount Requested

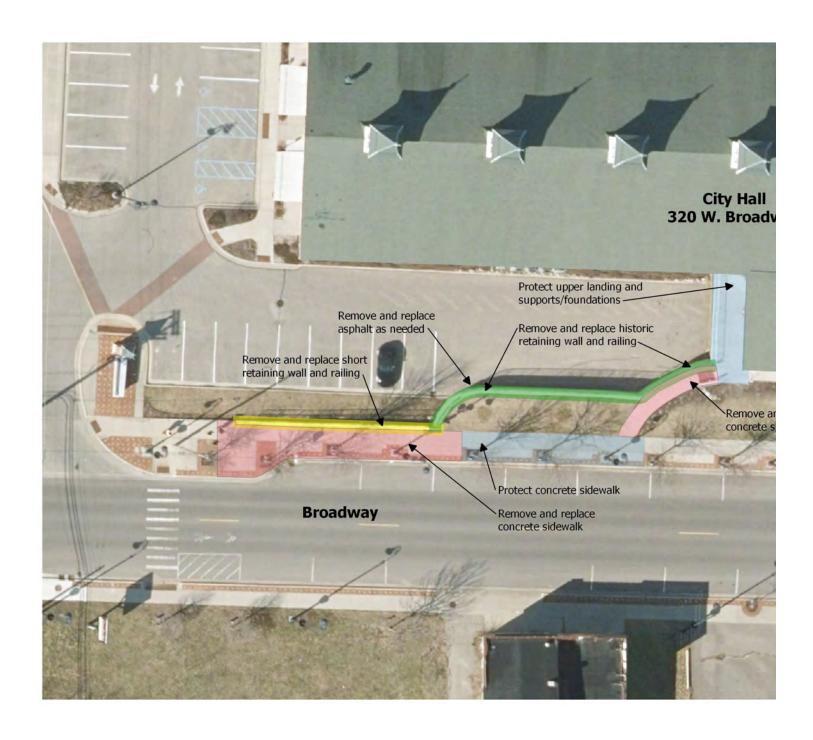
\$70,000.00

Amount Matched

\$0.00

Total Amount

\$70,000.00


Uploaded Files

Name

RetainingWallImage20230306 2023-09-06.jpg

FinalGeotechReport20230306 2023-09-06.pdf

There are no comments to display.

856 E. Eighth Street, Suite 1 Traverse City, MI 49686-2784

T (231) 941-5200

www.sme-usa.com

February 2, 2023

Mr. Christopher Dombrowski, PE Williams & Works, Inc. 549 Ottawa Avenue NW, Suite 310 Grand Rapids, Michigan 49503

Via E-mail: Dombrowski@williams-works.com

RE: Geotechnical Evaluation – Revised
Mt. Pleasant City Hall Retaining Walls
320 West Broadway Street
Mt. Pleasant, Michigan 48858
SME Project No. 091171.00

Dear Mr. Dombrowski:

We have completed the geotechnical evaluation for the proposed retaining wall replacement at Mt. Pleasant City Hall. This report presents the results of our observations and analyses, our geotechnical recommendations, and a discussion on general construction considerations based on the information disclosed by the borings.

This evaluation was conducted in general accordance with the scope of services outlined in SME Proposal No. P03459.22 dated December 21, 2022. We revised our report dated December 22, 2022 based on our conversations with Mr. Christopher Dombrowski, PE with Williams & Works. Williams & Works (W&W) authorized our services.

As input into this evaluation W&W provided SME with the following documents.

- A preliminary drawing titled "Existing Conditions" (Sheet No. 2) for the "City Hall Retaining Wall Replacement" project, prepared by W&W.
- A document titled "Request for Proposals" prepared by the City of Mt. Pleasant.
- Historic plan sheets nos. A2.1, A2.4, A2.5, A2.6, A6.1, A8.2, and S2.1 prepared by J.E. Johnson Design Group, LLC.
- A document titled "Discloser Statement" dated November 2006 and prepared by AKT Peerless Environmental Services.

SME previously prepared a Geotechnical Evaluation Report dated January 7, 2022 (SME Project No. 088030.00).

SITE CONDITONS AND PROJECT DESCRIPTION

The site is located at Mt. Pleasant City Hall at 320 West Broadway Street. The site location is depicted on the Location Map on the attached Boring Location Diagram (Figure No. 1).

Existing retaining walls extend in a generally east-west direction across the site. The retaining walls provide grade separation between the City Hall parking area and the sidewalk and West Broadway Street. The project includes replacement of the existing walls that extend from the west end of the site to the existing City Hall building (i.e. the retraining walls east of the building are not included in this project). The subject retaining walls are about 1-foot high at the west end and about 12 feet high on east end at the existing building. The eastern retaining wall was underpinned and refurbished in 2008 when the building was remodeled and converted into City Hall.

The new cast-in-place concrete retaining walls will be located approximately along the same alignment and will be about the same height as the existing retaining walls. We understand the new retaining wall footings will have a design bearing elevation of 749 feet. Temporary and new permanent footings could be required to support the existing upper landing at the building entrance.

EVALUATION PROCEDURES

FIELD EXPLORATION

SME completed two borings (B101 and B102) on October 21, 2022. One boring extended 15 feet beneath the existing ground surface and one boring extended 25 feet beneath the existing ground surface. The approximate locations of the borings are shown on Figure No. 1. Figure No. 1 also depicts the approximate locations of previous borings B1 and B2.

The planned number, locations, and depths of the borings were determined by SME. SME located the borings in the field by referencing existing site features and estimated the existing ground surface elevations at the borings based on the referenced Existing Conditions drawing.

The borings were performed with a truck-mounted rotary drill rig and were advanced to the sampling depths using continuous-flight, hollow-stem augers. The borings included soil sampling based upon the Split-barrel Sampling Procedure. Recovered split-barrel samples were sealed in glass jars by the driller.

Groundwater observations were recorded during and upon completion of drilling at each boring. After completion of drilling and collection of groundwater observations, the boreholes were backfilled with auger cuttings and capped with similar material in paved areas.

Soil samples recovered from the field exploration were returned to the SME laboratory for further observation and testing.

LABORATORY TESTING

The laboratory testing program consisted of performing visual soil classification on recovered samples in general accordance with ASTM D2488. SME also performed moisture content and hand penetrometer tests on portions of recovered cohesive soil samples and moisture content tests on portions of organic soil samples. The attached Laboratory Testing Procedures provides descriptions of these laboratory tests. Based on the laboratory testing, we assigned a Unified Soil Classification System (USCS) group symbol to each of the various soil strata encountered.

Upon completion of the laboratory testing, boring logs were prepared that include information on materials encountered, penetration resistances, pertinent field observations made during the drilling operations, existing ground surface elevations as estimated by SME, and the results of the laboratory tests. The boring logs are attached to this report. Explanations of symbols and terms used on the boring logs are provided on the attached Boring Log Terminology sheet.

Soil samples retained over a long time, even sealed in jars, are subject to moisture loss and are no longer representative of the conditions initially encountered in the field. Therefore, we normally retain soil samples in our laboratory for 60 days and then dispose of them, unless instructed otherwise.

SUBSURFACE CONDITIONS

SOIL CONDITIONS

The soil conditions encountered at borings B101, B102, and B1 (western retaining wall borings) generally consist of surficial topsoil or pavement overlaying existing sand fill over organic soils, e.g., peat. The peat was underlain by natural sands overlying natural clay (at boring B102), that extended to the explored depths of the borings; however, natural soils were not encountered at boring B1 which terminated in organic soils.

The existing sand fill extended about 3.5 to 9 feet beneath the existing ground surface. The existing sand fill was encountered in a very loose to medium dense condition. Portions of the existing sand fill contained construction debris. Near boring B1 performed for our previous evaluation, potential buried pavement was encountered about 6 inches beneath the existing ground surface. Refer to the referenced Geotechnical Evaluation Report for additional information.

In borings B101 and B202, the peat extended to about 6 to 11 feet below the existing ground surface. In boring B1, organic soil, mostly silt, extended to the termination depth, 9.5 feet, of the boring; therefore, the organic soils may extend deeper in this area. The peat had moisture contents of about 122 to 141 percent.

The natural sands were encountered in a very loose to dense condition, and the natural clays encountered at boring B102 exhibited very stiff consistency.

The soil profile described above and included on the attached draft boring logs is a generalized description of the conditions encountered. The stratification depths described above and shown on the boring logs indicate a zone of transition from one soil type to another and do not show exact depths of change from one soil type to another. Soil conditions may vary between or away from the boring locations from those conditions noted on the logs. Please refer to the boring logs for the specific soil conditions at the boring locations.

Thickness measurements of surficial materials reported on the boring logs should be considered approximate since mixing of these materials with the underlying subgrade can occur while advancing the augers, and it is difficult to measure the thickness of surface materials in small-diameter boreholes. Shallow hand augers or test pits in topsoil areas and pavement cores in pavement areas should be performed if more accurate topsoil thicknesses are required.

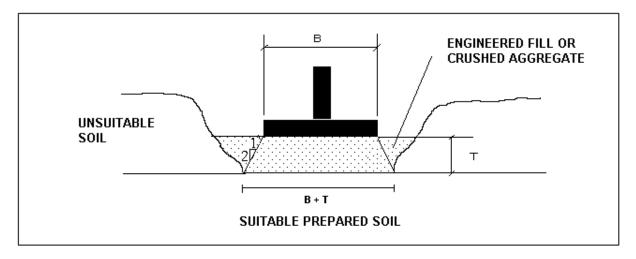
GROUNDWATER CONDITIONS

In borings B101 and B102 groundwater was encountered about 7 to 8.5 feet beneath the existing ground surface during drilling, corresponding to approximate elevations 747 to 751.5 feet. Groundwater was not encountered above the borehole cave-in depth upon completion of drilling in borings B101 and B102. Groundwater was not encountered in boring B1 which terminated at a depth of 9.5 feet.

In organic soils and clays a long time may be required for the groundwater level in the borehole to reach an equilibrium position. Therefore, the use of groundwater observation wells (piezometers) is necessary to accurately determine the hydrostatic groundwater level within cohesive and organic soils.

Hydrostatic groundwater levels, perched groundwater conditions, and the rate of infiltration into excavations should be expected to fluctuate throughout the year, based on variations in precipitation, evaporation, run-off, and other factors. The groundwater observations recorded on the boring logs represent conditions at the time the readings were taken. The groundwater depths/elevations at the time of construction may vary from those conditions noted on the logs.

ANALYSIS AND RECOMMENDATIONS


RETAINING WALLS AND DRAINAGE

WALL FOUNDATIONS

The new cast-in-place concrete retaining walls will vary from about 2 to 12 feet high. The existing fill and organic soils are not suitable for foundation support and must be removed beneath shallow foundations. Shallow foundations should bear on engineered fill overlying suitable natural soils or on suitable natural soils. Suitable bearing soils were encountered below the existing fill and organic soils between 6 and 11 feet beneath the existing ground surface, corresponding to approximate elevations 748 to 749 feet; however, the organic soils may extend deeper in the area of B1 that terminated in organic soils. Retaining wall foundations should be designed with a maximum net allowable soil bearing pressure of 3,000 pounds per square-foot (psf) bearing on suitable soils described above, except that retaining wall foundations with a non-uniform pressure distribution at their base may be designed using a maximum edge pressure of 3,500 psf, provided the average pressure below the foundation does not exceed 3,000 psf. The design maximum net allowable soil bearing pressure is based on a global safety factor of three or more (for general shear failure).

SME should evaluate foundation subgrades during construction to verify that the design soil bearing pressure is achieved. New footings must not bear on or above existing fill and organic soils. Where existing fills and organic soils are encountered, they must be undercut to expose suitable natural sands. Since groundwater was encountered as high as elevation 751.5 feet at the borings, we anticipate groundwater will be encountered in the undercuts to remove the existing fills and organic soils, and the contractor should be prepared to dewater the undercuts and footing excavations, as necessary. After undercutting unsuitable soils, the design bearing elevation can be reestablished using coarse-crushed aggregate consisting of a well graded crushed natural aggregate or crushed concrete ranging from one to three inches in size with no more than seven percent by weight passing the No. 200 sieve. The aggregate should be "tamped" into the subgrade using the excavator bucket until the subgrade is stable.

The foundation undercuts should be oversized laterally and backfilled with granular engineered fill or crushed aggregate as shown on the Typical Foundation Undercutting Diagram below.

The foundation subgrade soils at this site are susceptible to disturbance, especially where groundwater is encountered. To reduce the incidence and severity of subgrade disturbance, the contractor should prepare to place the coarse-crushed aggregate as soon the undercutting is performed.

The retaining wall foundations must be situated a minimum of 42 inches below final site grades for protection against frost action during normal winters.

We estimate total settlement for retaining wall foundations using the recommended maximum net allowable bearing pressures and bearing on suitable soils as described above and as verified in the field at the time of construction by SME should be 1 inch or less. Differential settlements are estimated to be about one-half the total settlement. The settlement estimates provided are based on the available boring information, recommended bearing pressure, our experience with similar structures and soil conditions, and field verification of suitable bearing soils by SME.

WALL BACKFILL

We recommend the retaining walls be backfilled with MDOT Class II granular material extending a minimum of two feet horizontally from the backside of the walls. Retaining wall backfill should be compacted to a minimum of 95 percent of the maximum dry density as determined by the Modified Proctor test. Care should be exercised during compaction of the wall backfill to avoid overstressing the walls. The retaining wall recommendations below are based on properly placed and compacted backfill that meets the gradational requirements of MDOT Class II granular material. For purposes of design, we recommend using a unit weight of 115 pounds per cubic-foot (pcf) and a friction angle of 30 degrees for the compacted backfill.

LATERAL EARTH PRESSURES AND SLIDING RESISTANCE

For the purpose of designing the retaining walls, we recommend a design groundwater elevation of 751.5 feet. For a drained granular backfill situated above the design groundwater level, and a level surface behind the walls, an active equivalent fluid pressure of 40 pcf should be used for the design of flexible walls. For below-grade walls below the design groundwater level, we recommended a combined lateral earth and hydrostatic (water) of 80 pcf for the active pressure condition. Additional lateral pressures due to surcharge loading, such as stored materials, sloping ground, or traffic loads, should be added to the above lateral earth pressures for design. We recommend using a horizontal coefficient of 0.33 for an active condition, to calculate loads on walls due to surcharges. Use of this value requires a granular wall backfill. Surcharge loads should be modeled as a uniform pressure distribution applied to the entire wall height. An outward movement away from the backfill equal to approximately 0.001 times the height of the wall is generally required to achieve the active earth pressure condition for granular backfill.

We recommend using an allowable passive equivalent fluid pressure to model the passive resistance of the soil wedge adjacent to retaining walls to resist sliding or overturning. To account for the full passive resistance, a horizontal surface is required for the soil mass extending at least 10 feet from the face of the wall foundation, or three times the height of the surface generating the passive pressure, whichever is greater. An allowable equivalent passive fluid pressure of 180 pcf can be considered for properly compacted MDOT Class II engineered fill, or natural soils, above the design groundwater level based on the ultimate equivalent passive fluid pressure divided by a factor of safety of about two. The allowable equivalent passive fluid pressure should be reduced to 100 pcf below the design groundwater level. The upper 12 inches of soil in areas not protected by pavement or other erosion resistant material should not be included in the design for passive resistance to lateral loads.

To evaluate the sliding of the wall, the sliding resistance at the base, and the passive (resisting) and active (driving) earth forces must be computed. The sliding resistance may be determined by using a recommended ultimate sliding coefficient of 0.35 for concrete footings cast directly on coarse-crushed aggregate or natural sands. Typically, a factor of safety of 1.5 is applied for sliding, and a factor of safety of 2.0 is often applied to overturning.

DRAINAGE

The earth pressures presented above are for a drained backfill. To reduce the potential for the build-up of hydrostatic pressure behind the retaining walls during construction and post construction we recommend drains be installed along the base of the retained soil side of the retaining walls. The drains should consist of a minimum six-inch-diameter perforated plastic drainpipe, wrapped with a filter fabric and surrounded by six inches of a filter material, such as pea gravel (MDOT 34G or MDOT 34R), wrapped with a filter fabric. The drains should be discharged to a gravity drainage outlet, if feasible. We recommend the design include provisions for access to the drains for cleaning and maintenance. Typically, annual checking and maintenance of the drains should be planned for.

EXTERNAL STABILITY

Based on the soil conditions, the retaining wall heights, and provided the recommendations above are followed, and considering final grades will approximately match existing grades, we do not expect external stability to control the wall design. Therefore, we do not judge a formal global stability analysis to be required.

DESIGN AND CONSTRUCTION CONSIDERATIONS

As indicated above, groundwater should be anticipated in undercuts to remove the existing fills and organic soils. Provided undercuts are performed in relatively small areas at a time, a coarse-crushed aggregate in placed as organic soils are removed, we anticipate conventional sump pit and pumping techniques will generally be suitable to control groundwater seepage in the foundation undercuts. Excavations that extend below the groundwater level in sands will require high capacity dewatering techniques.

Temporary footings to support the existing landing area can bear in the existing sand fill provided a maximum net allowable soil bearing pressure of 1,500 psf is used for design. New permanent footings should bear below the existing sand fill and organic soils using a maximum net allowable soil bearing pressure of 3,000 psf.

The contractor must provide a safely sloped excavation or an adequately constructed and braced shoring system in accordance with federal, state, and local safety regulations for individuals working in an excavation that may expose them to the danger of moving ground. If material is stored or heavy equipment is operated near an excavation, use appropriate shoring to resist the extra pressure due to the superimposed loads.

We understand the existing sidewalk will be removed during construction of the new retaining wall. Based on the proposed wall alignment and the required undercut depth to remove organic soils, we anticipate temporary earth retention may be required to protect the adjacent roadway along a portion of the retaining wall alignment. Excavations cannot extend below existing foundations without first properly underpinning or shoring the existing foundations. Based on the site conditions and anticipated excavation depths, we anticipate temporary earth retention (if required) will need to retain about 3 feet adjacent to the existing roadway. Therefore, we do not anticipate the temporary earth retention will need to consist of heavy steel sheeting or other similar system. Rather, we anticipate steel sheets that are pushed into the subgrade or precast blocks may be provide sufficient temporary earth retention. However, underpinning, shoring and earth retention systems should be designed by a qualified professional engineer, and installed by a contractor experienced with construction of these systems.

The contractor must protect adjacent existing buildings, utilities and roadways during demolition of the existing retaining walls and during construction of the proposed retaining walls. During the excavating and compacting operations, excessive vibrations should not cause settlement of the existing buildings, utilities and roadways, and the contractor should avoid undermining existing building, utilities, and roadways.

Handling, transportation, and disposal of excavated materials and groundwater should be performed in accordance with applicable regulations. Refer to the referenced Disclosure Document for information regarding environmentally impacted soils at this site.

We appreciate the opportunity to be of service. If you have questions regarding this report, or if you require additional information, please contact us.

Very truly yours,

SME

PREPARED BY:

REVIEWED BY:

Feb 2 2023 2:11 PM

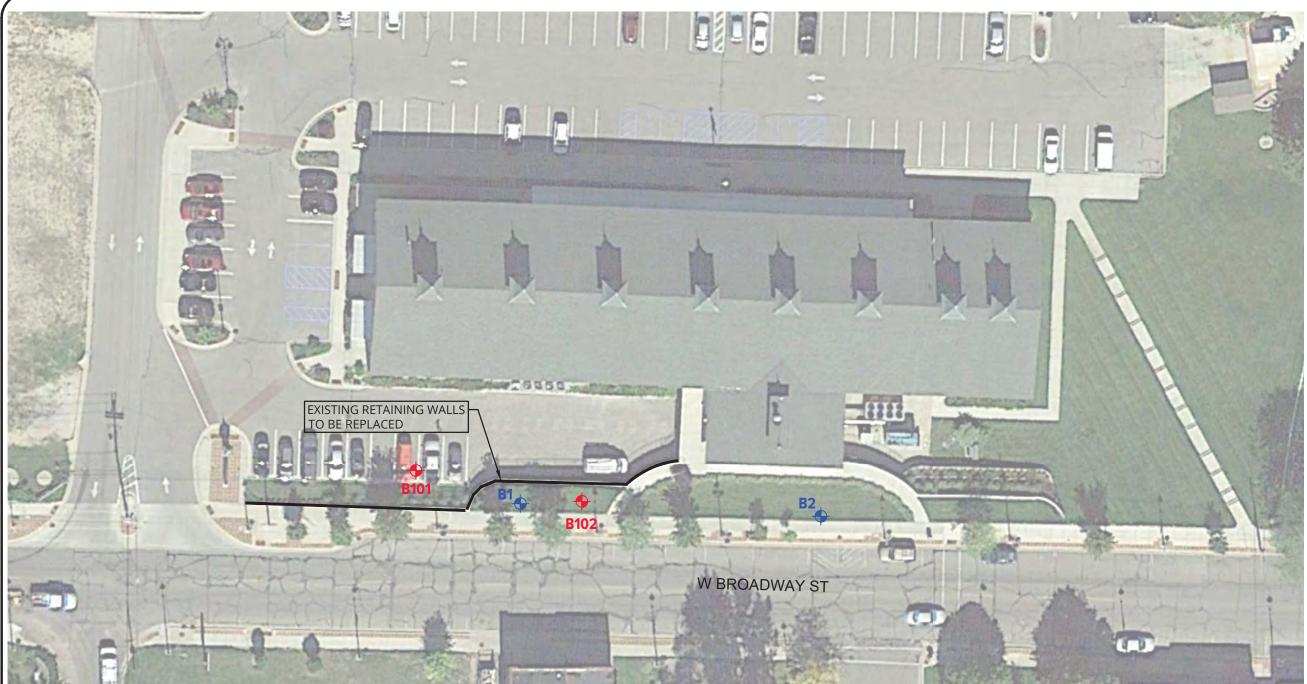
Paul Anderson

Paul E. Anderson, PE Senior Project Engineer Andrew T. Bolton Feb 2 2023 10:40 AM

Andrew T. Bolton, PE Senior Consultant

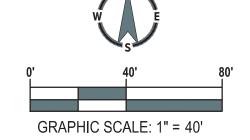
Attachments: Boring Location Diagram (Figure No. 1)

Boring Log Terminology Boring Logs (B101 and B102)


Previous Boring Logs (B1 and B2) – SME Project No. 088030.00 Important Information About This Geotechnical-Engineering Report

General Comments

Laboratory Testing Procedures



APPROXIMATE LOCATION OF 2021 BORING SME PROJECT NO. 088030.00

APPROXIMATE CURRENT BORING LOCATION

Project

MT. PLEASANT CITY HALL RETAINING WALLS

Project Location

MT. PLEASANT, MICHIGAN

Sheet Name

BORING LOCATION DIAGRAM

No.	Revision Date
Date	

12-20-2022

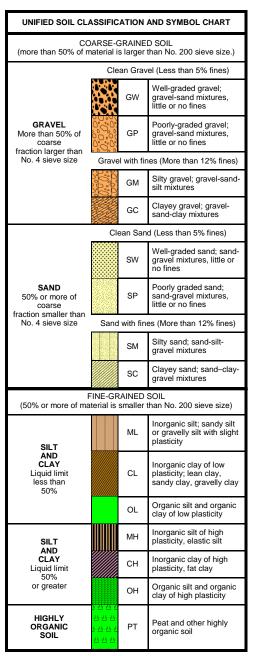
CADD

Designer PEA

Scale AS NOTED

Project **091171.00**

Figure No.


1

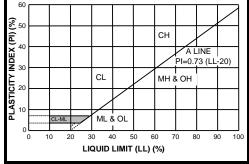
DRAWING NOTE: SCALE DEPICTED IS MEANT FOR 11" X 17" AND WILL SCALE INCORRECTLY IF PRINTED ON ANY OTHER SIZE MEDIA

REPRODUCTION SHALL BE MADE WITHOUT THE PRICE CONSENT OF SME

BORING LOG TERMINOLOGY

OTHER MATERIAL SYMBOLS						
Topsoil	Void	Sandstone				
Asphalt Concrete	Glacial Till	Siltstone				
Aggregate Base	Coal	Limestone				
Portland Cement Concrete	Shale	Fill				

LABORATORY CLASSIFICATION CRITERIA				
GW	$C_U = \frac{D_{60}}{D_{10}}$ greater than 4; C_C	$= \frac{D_{30}^{2}}{D_{10} \times D_{60}}$ between 1 and 3		
GP	Not meeting all gradation requ	irements for GW		
GM	Atterberg limits below "A" line or PI less than 4	Above "A" line with PI between 4 and 7 are		
GC	Atterberg limits above "A" line with PI greater than 7	borderline cases requiring use of dual symbols		
SW	$C_U = \frac{D_{60}}{D_{10}}$ greater than 6; $C_C = \frac{{D_{30}}^2}{{D_{10} \times D_{60}}}$ between 1 and 3			
SP	Not meeting all gradation requirements for SW			
SM	Atterberg limits below "A" line or PI less than 4	Above "A" line with PI between 4 and 7 are		
SC	Atterberg limits above "A" line with PI greater than 7	borderline cases requiring use of dual symbols		


Determine percentages of sand and gravel from grain-size curve. Depending on percentage of fines (fraction smaller than No. 200 sieve size), coarse-grained soils are classified as follows:

- · SP-SM or SW-SM (SAND with Silt or SAND with Silt and Grav-
- SP-SC or SW-SC (SAND with Clay or SAND with Clay and Gravel)
- GP-GM or GW-GM (GRAVEL with Silt or GRAVEL with Silt and Sand)
- GP-GC or GW-GC (GRAVEL with Clay or GRAVEL with Clay and Sand) If the fines are CL-ML:
- SC-SM (SILTY CLAYEY SAND or SILTY CLAYEY SAND with Gravel)
- SM-SC (CLAYEY SILTY SAND or CLAYEY SILTY SAND with Gravel)
- GC-GM (SILTY CLAYEY GRAVEL or SILTY CLAYEY GRAVEL with Sand)

PARTICLE SIZES

Greater than 12 inches 3 inches to 12 inches Boulders Cobbles 3/4 inches to 3 inches No. 4 to 3/4 inches Gravel- Coarse Fine Coarse Medium No. 10 to No. 4 No. 40 to No. 10 No. 200 to No. 40 Silt and Clay Less than (0.074 mm)

PLASTICITY CHART

VISUAL MANUAL PROCEDURE

When laboratory tests are not performed to confirm the classification of soils exhibiting borderline classifications, the two possible classifications would be separated with a slash, as follows:

For soils where it is difficult to distinguish if it is a coarse or fine-

- SC/CL (CLAYEY SAND to Sandy LEAN CLAY)
- SM/ML (SILTY SAND to SANDY SILT)
 GC/CL (CLAYEY GRAVEL to Gravelly LEAN CLAY)

GM/ML (SILTY GRAVEL to Gravelly SILT)

For soils where it is difficult to distinguish if it is sand or gravel, poorly or well-graded sand or gravel; silt or clay; or plastic or nonplastic silt or clay: SP/GP or SW/GW (SAND with Gravel to GRAVEL with Sand)

- SC/GC (CLAYEY SAND with Gravel to CLAYEY GRAVEL with Sand) SM/GM (SILTY SAND with Gravel to SILTY GRAVEL with
- Sand) SW/SP (SAND or SAND with Gravel)
- GP/GW (GRAVEL or GRAVEL with Sand) SC/SM (CLAYEY to SILTY SAND) GM/GC (SILTY to CLAYEY GRAVEL)

- CL/ML (SILTY CLAY) ML/CL (CLAYEY SILT)
- CH/MH (FAT CLAY to ELASTIC SILT)
 CL/CH (LEAN to FAT CLAY)
- MH/ML (FLASTIC SILT to SILT)

DRILLING AND SAMPLING ABBREVIATIONS

2ST Shelby Tube - 2" O.D. 3ST Shelby Tube – 3" O.D. AS GS Auger Sample Grab Sample LS Liner Sample

NR No Recovery PM Pressuremeter

Rock Core diamond bit. NX size, except where noted SB Split Barrel Sample 1-3/8" I.D., 2" O.D.,

except where noted VS Vane Shear

ws Wash Sample

OTHER ABBREVIATIONS

Weight of Hammer WOR Weight of Rods Soil Probe PID Photo Ionization Device Flame Ionization Device

DEPOSITIONAL FEATURES

Parting as much as 1/16 inch thick 1/16 inch to 1/2 inch thick 1/2 inch to 12 inches thick Seam Layer greater than 12 inches thick Stratum Pocket deposit of limited lateral extent

Lens

lenticular deposit an unstratified, consolidated or cemented Hardpan/Till mixture of clay, silt, sand and/or gravel, the size/shape of the constituents vary widely

Lacustrine soil deposited by lake water soil irregularly marked with spots of different Mottled

colors that vary in number and size Varved alternating partings or seams of silt and/or

clav

Occasional one or less per foot of thickness

more than one per foot of thickness strata of soil or beds of rock lying between or Interbedded alternating with other strata of a different

DESCRIPTION OF RELATIVE QUANTITIES

The visual-manual procedure uses the following terms to describe the relative quantities of notable foreign materials, gravel, sand or fines:

 $\begin{array}{lll} \mbox{Trace} & - & \mbox{particles are present but estimated to be less than 5\%} \\ \mbox{Few} & - & 5 \mbox{ to 10\%} \\ \mbox{Little} & - & 15 \mbox{ to 25\%} \end{array}$

Some - 30 to 45% Mostly - 50 to 100%

CLASSIFICATION TERMINOLOGY AND CORRELATIONS

Cohesionless Soils		Cohesive Soils			
Relative Density	N ₆₀ (N-Value) (Blows per foot)	Consistency	N ₆₀ (N-Value) (Blows per foot)	Undrained Shear Strength (kips/ft²)	
Very Loose Loose Medium Dense Dense Very Dense Extremely Dense	0 to 4 5 to 10 11 to 30 31 to 50 51 to 80 Over 81	Very Soft Soft Medium Stiff Very Stiff Hard	<2 2 - 4 5 - 8 9 - 15 16 - 30 > 30	0.25 or less > 0.25 to 0.50 > 0.50 to 1.0 > 1.0 to 2.0 > 2.0 to 4.0 > 4.0 or greater	

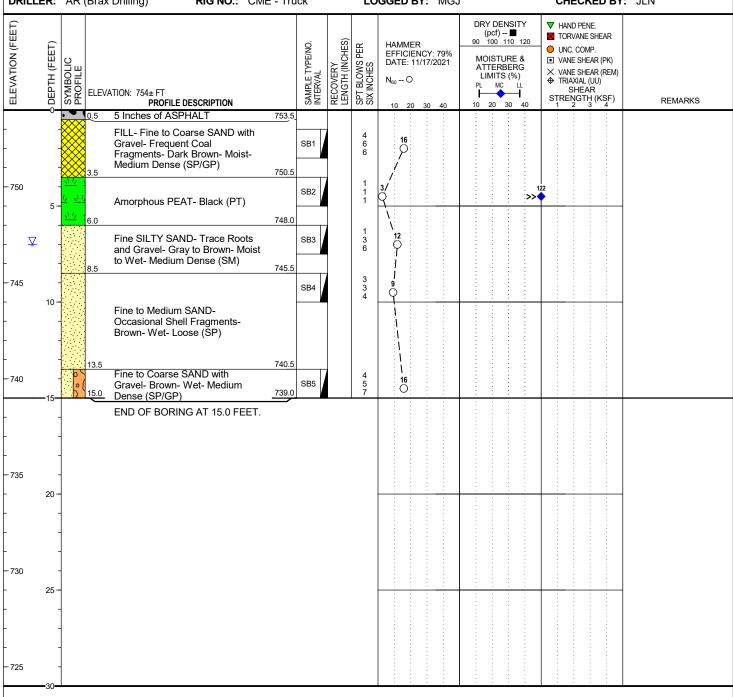
Standard Penetration 'N-Value' = Blows per foot of a 140-pound hammer falling 30 inches on a 2-inch O.D. split barrel sampler, except where noted. N60 values as reported on boring logs represent raw N-values corrected for hammer efficiency only

BORING B101

BORING DEPTH: 15 FEET

PAGE 1 OF 1

PROJECT NAME: Mt. Pleasant Retaining Walls


PROJECT NUMBER: 091171.00

CLIENT: Williams and Works LLC

PROJECT LOCATION: Mt. Pleasant, Michigan

DATE STARTED: 10/21/22 **COMPLETED:** 10/21/22 **BORING METHOD:** Hollow-stem Augers

DRILLER: AR (Brax Drilling) RIG NO .: CME - Truck LOGGED BY: MGJ CHECKED BY: JLN

GROUNDWATER & BACKFILL INFORMATION	

DEPTH (FT) ELEV (FT) 747.0

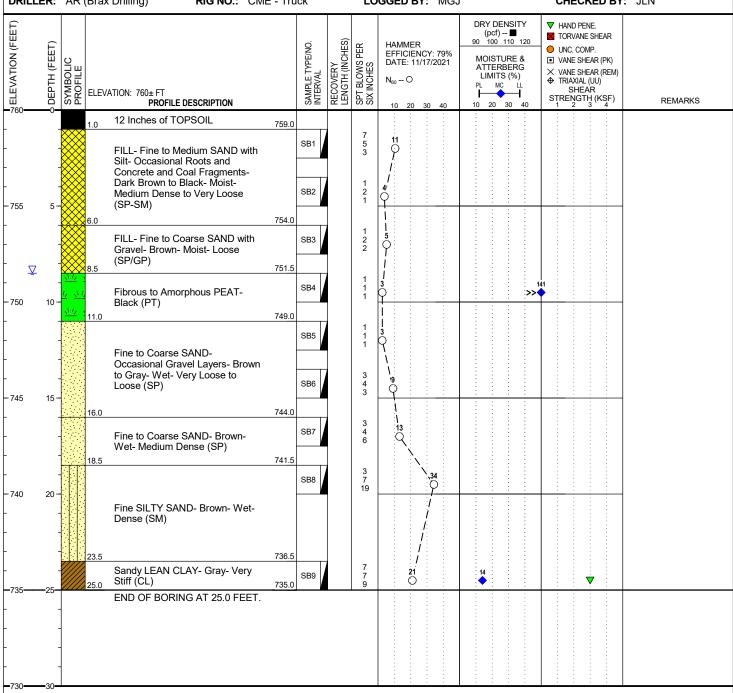
▼ DURING BORING: 7.0 NOTES: 1. The indicated stratification lines are approximate. The in-situ transitions between materials may be gradual.

2. The colors depicted on the symbolic profile are solely for visualization purposes and do not necessarily represent the in-situ colors encountered.

CAVE-IN OF BOREHOLE AT: 7.8 746.2

BACKFILL METHOD: Auger Cuttings

BORING B102


PAGE 1 OF 1

BORING DEPTH: 25 FEET PROJECT NAME: Mt. Pleasant Retaining Walls PROJECT NUMBER: 091171.00

CLIENT: Williams and Works LLC PROJECT LOCATION: Mt. Pleasant, Michigan

DATE STARTED: 10/21/22 **COMPLETED:** 10/21/22 **BORING METHOD:** Hollow-stem Augers

DRILLER: AR (Brax Drilling) RIG NO .: CME - Truck LOGGED BY: MGJ CHECKED BY: JLN

GROUNDWATER & BACKFILL INFORMATION

DEPTH (FT) ELEV (FT)

8.5 751.5

NOTES: 1. The indicated stratification lines are approximate. The in-situ transitions between materials may be gradual.

CAVE-IN OF BOREHOLE AT: 12.1 747.9

BACKFILL METHOD: Auger Cuttings

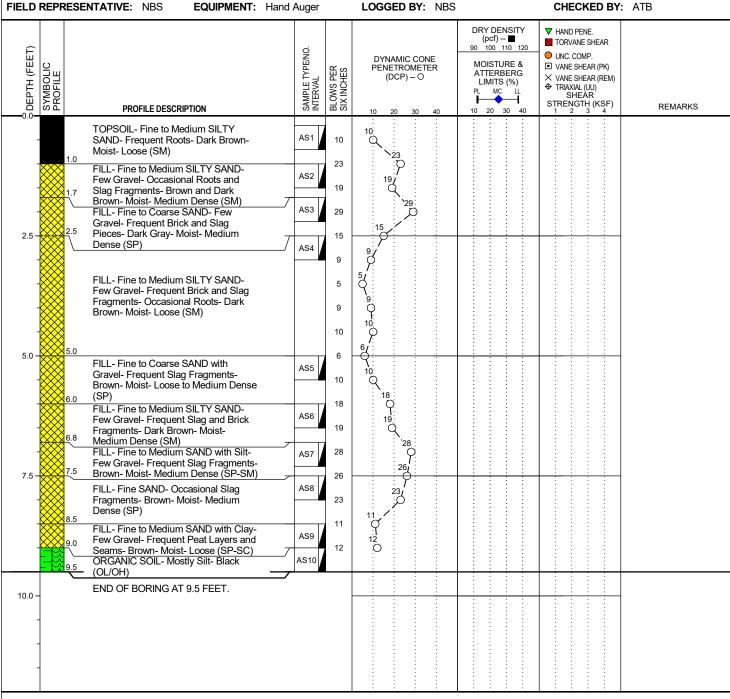
▼ DURING BORING:

2. The colors depicted on the symbolic profile are solely for visualization purposes and do not necessarily represent the in-situ colors encountered.

BORING DEPTH: 9.5 FEET

PAGE 1 OF 1

PROJECT NAME: Mt. Pleasant City Hall Retaining Walls


PROJECT NUMBER: 088030.00

CLIENT: City of Mt. Pleasant

PROJECT LOCATION: Mount Pleasant, Michigan

DATE STARTED: 11/5/21 **COMPLETED:** 11/5/21 **BORING METHOD:** Hand Auger

FIELD REPRESENTATIVE: NBS LOGGED BY: NBS CHECKED BY: ATB

GROUNDWATER & BACKFILL INFORMATION

GROUNDWATER WAS NOT ENCOUNTERED

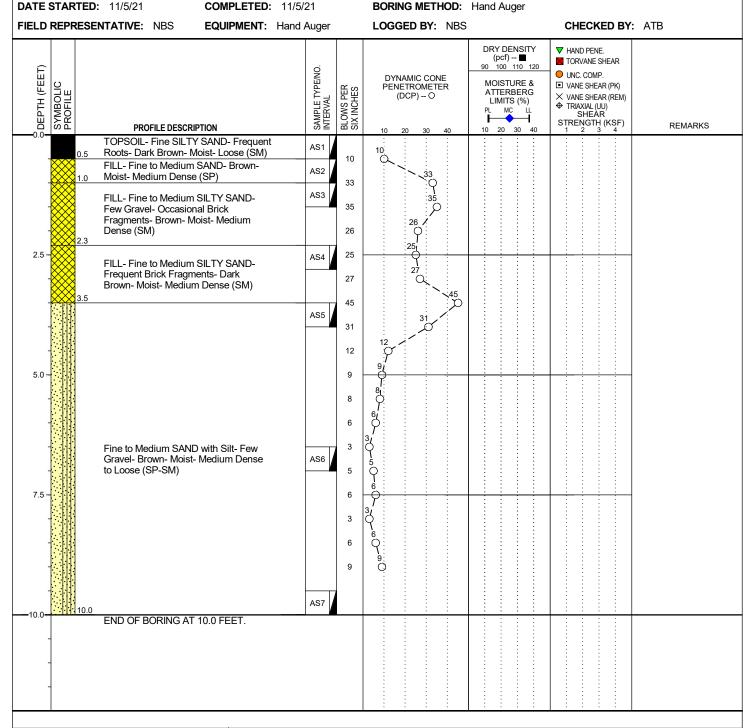
NOTES: 1. The indicated stratification lines are approximate. The in-situ transitions between materials may be gradual. 2. The colors depicted on the symbolic profile are solely for visualization purposes and do not necessarily represent the in-situ colors encountered.

BACKFILL METHOD: Auger Cuttings

BORING DEPTH: 10 FEET

PAGE 1 OF 1

PROJECT NUMBER: 088030.00


PROJECT NAME: Mt. Pleasant City Hall Retaining Walls

PROJECT LOCATION: Mount Pleasant, Michigan

CLIENT: City of Mt. Pleasant

COMPLETED: 11/5/21

BORING METHOD: Hand Auger

GROUNDWATER & BACKFILL INFORMATION

GROUNDWATER WAS NOT ENCOUNTERED

NOTES: 1. The indicated stratification lines are approximate. The in-situ transitions between materials may be gradual. 2. The colors depicted on the symbolic profile are solely for visualization purposes and do not necessarily represent the in-situ colors encountered.

BACKFILL METHOD: Auger Cuttings

Important Information about This

Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you – assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, you can benefit from a lowered exposure to problems associated with subsurface conditions at project sites and development of them that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed herein, contact your GBA-member geotechnical engineer. Active engagement in GBA exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Understand the Geotechnical-Engineering Services Provided for this Report

Geotechnical-engineering services typically include the planning, collection, interpretation, and analysis of exploratory data from widely spaced borings and/or test pits. Field data are combined with results from laboratory tests of soil and rock samples obtained from field exploration (if applicable), observations made during site reconnaissance, and historical information to form one or more models of the expected subsurface conditions beneath the site. Local geology and alterations of the site surface and subsurface by previous and proposed construction are also important considerations. Geotechnical engineers apply their engineering training, experience, and judgment to adapt the requirements of the prospective project to the subsurface model(s). Estimates are made of the subsurface conditions that will likely be exposed during construction as well as the expected performance of foundations and other structures being planned and/or affected by construction activities.

The culmination of these geotechnical-engineering services is typically a geotechnical-engineering report providing the data obtained, a discussion of the subsurface model(s), the engineering and geologic engineering assessments and analyses made, and the recommendations developed to satisfy the given requirements of the project. These reports may be titled investigations, explorations, studies, assessments, or evaluations. Regardless of the title used, the geotechnical-engineering report is an engineering interpretation of the subsurface conditions within the context of the project and does not represent a close examination, systematic inquiry, or thorough investigation of all site and subsurface conditions.

Geotechnical-Engineering Services are Performed for Specific Purposes, Persons, and Projects, and At Specific Times

Geotechnical engineers structure their services to meet the specific needs, goals, and risk management preferences of their clients. A geotechnical-engineering study conducted for a given civil engineer will <u>not</u> likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client.

Likewise, geotechnical-engineering services are performed for a specific project and purpose. For example, it is unlikely that a geotechnical-engineering study for a refrigerated warehouse will be the same as one prepared for a parking garage; and a few borings drilled during a preliminary study to evaluate site feasibility will not be adequate to develop geotechnical design recommendations for the project.

Do <u>not</u> rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project or purpose;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it;
 e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, the reliability of a geotechnical-engineering report can be affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying the recommendations in it. A minor amount of additional testing or analysis after the passage of time – if any is required at all – could prevent major problems.

Read this Report in Full

Costly problems have occurred because those relying on a geotechnical-engineering report did not read the report in its entirety. Do <u>not</u> rely on an executive summary. Do <u>not</u> read selective elements only. *Read and refer to the report in full.*

You Need to Inform Your Geotechnical Engineer About Change

Your geotechnical engineer considered unique, project-specific factors when developing the scope of study behind this report and developing the confirmation-dependent recommendations the report conveys. Typical changes that could erode the reliability of this report include those that affect:

- · the site's size or shape;
- the elevation, configuration, location, orientation, function or weight of the proposed structure and the desired performance criteria;
- · the composition of the design team; or
- · project ownership.

As a general rule, *always* inform your geotechnical engineer of project or site changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept*

responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface using various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing is performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgement to form opinions about subsurface conditions throughout the site. Actual sitewide-subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team through project completion to obtain informed guidance quickly, whenever needed.

This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, they are <u>not</u> final, because the geotechnical engineer who developed them relied heavily on judgement and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* exposed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmation-dependent recommendations if you fail to retain that engineer to perform construction observation.*

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a continuing member of the design team, to:

- · confer with other design-team members;
- help develop specifications;
- review pertinent elements of other design professionals' plans and specifications; and
- be available whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform construction-phase observations.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note*

conspicuously that you've included the material for information purposes only. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, only from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and be sure to allow enough time to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. This happens in part because soil and rock on project sites are typically heterogeneous and not manufactured materials with well-defined engineering properties like steel and concrete. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnical-engineering report does not usually provide environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures*. If you have not obtained your own environmental information about the project site, ask your geotechnical consultant for a recommendation on how to find environmental risk-management guidance.

Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, the engineer's services were not designed, conducted, or intended to prevent migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, proper implementation of the geotechnical engineer's recommendations will not of itself be sufficient to prevent moisture infiltration. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. Geotechnical engineers are not building-envelope or mold specialists.

Telephone: 301/565-2733

e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2019 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent

GENERAL COMMENTS

BASIS OF GEOTECHNICAL REPORT

This report has been prepared in accordance with generally accepted geotechnical engineering practices to assist in the design and/or evaluation of this project. If the project plans, design criteria, and other project information referenced in this report and utilized by SME to prepare our recommendations are changed, the conclusions and recommendations contained in this report are not considered valid unless the changes are reviewed, and the conclusions and recommendations of this report are modified or approved in writing by our office.

The discussions and recommendations submitted in this report are based on the available project information, described in this report, and the geotechnical data obtained from the field exploration at the locations indicated in the report. Variations in the soil and groundwater conditions commonly occur between or away from sampling locations. The nature and extent of the variations may not become evident until the time of construction. If significant variations are observed during construction, SME should be contacted to reevaluate the recommendations of this report. SME should be retained to continue our services through construction to observe and evaluate the actual subsurface conditions relative to the recommendations made in this report.

In the process of obtaining and testing samples and preparing this report, procedures are followed that represent reasonable and accepted practice in the field of soil and foundation engineering. Specifically, field logs are prepared during the field exploration that describe field occurrences, sampling locations, and other information. Samples obtained in the field are frequently subjected to additional testing and reclassification in the laboratory and differences may exist between the field logs and the report logs. The engineer preparing the report reviews the field logs, laboratory classifications, and test data and then prepares the report logs. Our recommendations are based on the contents of the report logs and the information contained therein.

REVIEW OF DESIGN DETAILS, PLANS, AND SPECIFICATIONS

SME should be retained to review the design details, project plans, and specifications to verify those documents are consistent with the recommendations contained in this report.

REVIEW OF REPORT INFORMATION WITH PROJECT TEAM

Implementation of our recommendations may affect the design, construction, and performance of the proposed improvements, along with the potential inherent risks involved with the proposed construction. The client and key members of the design team, including SME, should discuss the issues covered in this report so that the issues are understood and applied in a manner consistent with the owner's budget, tolerance of risk, and expectations for performance and maintenance.

FIELD VERIFICATION OF GEOTECHNICAL CONDITIONS

SME should be retained to verify the recommendations of this report are properly implemented during construction. This may avoid misinterpretation of our recommendations by other parties and will allow us to review and modify our recommendations if variations in the site subsurface conditions are encountered.

PROJECT INFORMATION FOR CONTRACTOR

This report and any future addenda or other reports regarding this site should be made available to prospective contractors prior to submitting their proposals for their information only and to supply them with facts relative to the subsurface evaluation and laboratory test results. If the selected contractor encounters subsurface conditions during construction, which differ from those presented in this report, the contractor should promptly describe the nature and extent of the differing conditions in writing and SME should be notified so that we can verify those conditions. The construction contract should include provisions for dealing with differing conditions and contingency funds should be reserved for potential problems during earthwork and foundation construction. We would be pleased to assist you in developing the contract provisions based on our experience.

The contractor should be prepared to handle environmental conditions encountered at this site, which may affect the excavation, removal, or disposal of soil; dewatering of excavations; and health and safety of workers. Any Environmental Assessment reports prepared for this site should be made available for review by bidders and the successful contractor.

THIRD PARTY RELIANCE/REUSE OF THIS REPORT

This report has been prepared solely for the use of our Client for the project specifically described in this report. This report cannot be relied upon by other parties not involved in the project, unless specifically allowed by SME in writing. SME also is not responsible for the interpretation by other parties of the geotechnical data and the recommendations provided herein.

© 2009 SME General Comments 1

LABORATORY TESTING PROCEDURES

VISUAL ENGINEERING CLASSIFICATION

Visual classification was performed on recovered samples. The appended General Notes and Unified Soil Classification System (USCS) sheets include a brief summary of the general method used visually classify the soil and assign an appropriate USCS group symbol. The estimated group symbol, according to the USCS, is shown in parentheses following the textural description of the various strata on the boring logs appended to this report. The soil descriptions developed from visual classifications are sometimes modified to reflect the results of laboratory testing.

MOISTURE CONTENT

Moisture content tests were performed by weighing samples from the field at their in-situ moisture condition. These samples were then dried at a constant temperature (approximately 110° C) overnight in an oven. After drying, the samples were weighed to determine the dry weight of the sample and the weight of the water that was expelled during drying. The moisture content of the specimen is expressed as a percent and is the weight of the water compared to the dry weight of the specimen.

HAND PENETROMETER TESTS

In the hand penetrometer test, the unconfined compressive strength of a cohesive soil sample is estimated by measuring the resistance of the sample to the penetration of a small calibrated, spring-loaded cylinder. The maximum capacity of the penetrometer is 4.5 tons per square-foot (tsf). Theoretically, the undrained shear strength of the cohesive sample is one-half the unconfined compressive strength. The undrained shear strength (based on the hand penetrometer test) presented on the boring logs is reported in units of kips per square-foot (ksf).

TORVANE SHEAR TESTS

In the Torvane test, the shear strength of a low strength, cohesive soil sample is estimated by measuring the resistance of the sample to a torque applied through vanes inserted into the sample. The undrained shear strength of the samples is measured from the maximum torque required to shear the sample and is reported in units of kips per square-foot (ksf).

LOSS-ON-IGNITION (ORGANIC CONTENT) TESTS

Loss-on-ignition (LOI) tests are conducted by first weighing the sample and then heating the sample to dry the moisture from the sample (in the same manner as determining the moisture content of the soil). The sample is then re-weighed to determine the dry weight and then heated for 4 hours in a muffle furnace at a high temperature (approximately 440° C). After cooling, the sample is re-weighed to calculate the amount of ash remaining, which in turn is used to determine the amount of organic matter burned from the original dry sample. The organic matter content of the specimen is expressed as a percent compared to the dry weight of the sample.

ATTERBERG LIMITS TESTS

Atterberg limits tests consist of two components. The plastic limit of a cohesive sample is determined by rolling the sample into a thread and the plastic limit is the moisture content where a 1/8-inch thread begins to crumble. The liquid limit is determined by placing a ½-inch thick soil pat into the liquid limits cup and using a grooving tool to divide the soil pat in half. The cup is then tapped on the base of the liquid limits device using a crank handle. The number of drops of the cup to close the gap formed by the grooving tool ½ inch is recorded along with the corresponding moisture content of the sample. This procedure is repeated several times at different moisture contents and a graph of moisture content and the corresponding number of blows is plotted. The liquid limit is defined as the moisture content at a nominal 25 drops of the cup. From this test, the plasticity index can be determined by subtracting the plastic limit from the liquid limit.

Overview

Project Name

Sidewalk Replacement

Total Requested

\$150,000.00

(amount based on the Itemized Budget total)

Applicant Project Priority

Medium

Reocurring Need?

Not Reocurring

Applicant Information

Applicant Name

jmoore@mt-pleasant.org

Applicant Email

Jason Moore

Organization

City of MtPleasant

Address

320 W Broadway St MOUNT PLEASANT , 48858

Phone Number

9897795405

Organization Information

Primary Organization

City of Mt. Pleasant

Authorizers

adesentz@mt-pleasant.org

Status

Review

Address

320 W. Broadway

Mount Pleasant, Michigan 48858

Phone

(989) 779-5300

Fax

Categories

• Infrastructure

Project Description

Each year the City invests in maintenance of the sidewalk system. Focus is generally placed on identifiable hazards such as large obstacles and trees blocking sidewalk paths, small lips and cracks, pocketing water and spalling. Replacement sidewalks are built to coincide with planned street and water main replacement projects.

This project would replace sidewalk in various locations within the city.

Benefit Description

Since 1996, sidewalk has been replaced each year throughout the City. The Division of Public Works has created a sidewalk rating system so that the sidewalk replacement list can be prioritized and this project would address the worst sidewalk within the city.

Funding Requirements

Sidewalk replacement is an ongoing expense.

Project Timeline

Summer - 2024

Budget Items

Name	Cost	Quantity	Total	Category
Sidewalk Replacement - Various Locations	\$150,000.00	1	\$150,000.00	Infrastructure
AmountRequested	\$150,000.00			

Matching Funds

Name	Cost	Quantity	Total		
No Matching Funds items have been added.					
AmountMatched	\$0.00				

Budget Summary Amount Requested

\$150,000.00

Amount Matched

\$0.00

Total Amount

\$150,000.00

Uploaded Files

Name		
No files have been u	ploaded.	

There are no comments to display.

Overview

Project Name

Mid-Michigan/GKB Pathway North Connection

Total Requested

\$200,000.00

(amount based on the Itemized Budget total)

Applicant Project Priority

High

Reocurring Need?

Not Reocurring

Applicant Information

Applicant Name

pbiscorner@mt-pleasant.org

Applicant Email

Phil Biscorner

Organization

City of Mt. Pleasant

Address

320 West Broadway Mt. Pleasant , 48858

Phone Number

989-779-5328

Organization Information

Primary Organization

City of Mt. Pleasant

Authorizers

adesentz@mt-pleasant.org

Status

Review

Address

320 W. Broadway

Mount Pleasant, Michigan 48858

Phone

(989) 779-5300

Fax

Project Partners

Partnered With

Union Township

Authorizers

Mark Stuhldreher <u>mstuhldreher@uniontownshipmi.com</u>

Status

Review

Address

2010 S Lincoln Road

Mount Pleasant, Michigan 48858

Phone

989-772-4600

Fax

Categories

- Infrastructure
- Park Improvements
- Transportation

Project Description

The Project request is for funds to secure Design, Engineering, Bidding, and Construction services for the 2024 Mid-Michigan Pathway and GKB Riverwalk North Connection

Benefit Description

This pathway would add additional community-wide pedestrian access to the GKB Riverwalk Trail, connect Mission Creek Park to the GKB Riverwalk Trail and connect the City of Mt. Pleasant dog park to the pathway system. The dog park is a partnership between the City, Union Township, and the Friends of the Dog Park citizen's group. The trail addition would also create a northerly connection point for the Mid-Michigan Community Pathway to connect to Clare in the future. Connection points to regional pathway systems have been shown to increase the ability to obtain grant funding for pathway projects and increase the number of visitors to a community having positive economic benefits. Pathway projects also contribute to a reduction in obesity and provide an overall positive health benefit to the community. This project also supports the philosophy and many of the recommendations contained in the Greater Mt. Pleasant Area Non-Motorized Plan.

Funding Requirements

Partnerships with area agencies will be a focus along with pursuit and leveraging of available grant resources to design the trail in 2024 and construct in 2025.

Project Timeline

Not Entered

Budget Items

Name	Cost	Quantity	Total	Category
2% Request	\$200,000.00	1	\$200,000.00	Transportation
AmountRequested	\$200,000.00			

Matching Funds

Name	Cost	Quantity	Total
City of Mt. Pleasant	\$400,000.00	1	\$400,000.00
Union Township	\$300,000.00	1	\$300,000.00
MDOT TAP Grant	\$400,000.00	1	\$400,000.00
AmountMatched	\$1,100,000.00		

Budget Summary Amount Requested

\$200,000.00

Amount Matched

\$1,100,000.00

Total Amount

\$1,300,000.00

Uploaded Files

N	а	m	ρ

No files have been uploaded.

There are no comments to display.

Overview

Project Name

Aerial Fire Apparatus

Total Requested

\$250,000.00

(amount based on the Itemized Budget total)

Applicant Project Priority

Critical

Reocurring Need?

Not Reocurring

Applicant Information

Applicant Name

dlobsinger@mt-pleasant.org

Applicant Email

Doug Lobsinger

Organization

Mt. Pleasant Fire Dept.

Address

804 E. High St.

Mount Pleasant, 48858

Phone Number

9897795152

Organization Information

Primary Organization

City of Mt. Pleasant

Authorizers

adesentz@mt-pleasant.org

Status

Review

Address

320 W. Broadway

Mount Pleasant, Michigan 48858

Phone

(989) 779-5300

Fax

Categories

Safety/Security

Project Description

In 1997 The City of Mt Pleasant along with funding from the Saginaw Chippewa Indian Tribe purchased a 102-foot Aerial Fire Apparatus more commonly known as a ladder truck. Our current Aerial Apparatus is 27+ years old and in need of replacement. The Aerial apparatus allows firefighters to reach tall buildings, such as high-rise buildings, large commercial buildings, multi-story buildings in our downtown area and on CMU campus and on Tribal properties when requested. They can provide a high vantage point for supplying water to elevated master streams, utilized for ventilation, providing an access route for firefighters and an escape route for firefighters and people they have rescued.

Benefit Description

Currently the Mt. Pleasant Fire Department is available to assist the Tribal community in any fire or rescue situation. The purchase of this new Aerial Apparatus would enable us to maintain a level of response for fire suppression and enhance our ability to provide mutual aid to the Tribal community assisting in protecting its infrastructure such as the Soaring Eagle Casino, Hotel and Water Park while increasing our capabilities. Also, our department has mutual aid agreements with all other department within the county, as well as Clare and Alma. The purchase of this Aerial Apparatus would enable us to maintain that level of service to the citizens of Mt. Pleasant and Union Township, as well as providing mutual aid to the other communities in the surrounding area.

Funding Requirements

The Estimated cost from our research that we have completed to purchase a comparable Aerial Apparatus is \$2,250,000. Anticipated funds for the purchase of this Aerial Fire Apparatus are from the following sources:

- 1. Resale of our current Aerial Fire Apparatus
- 2. Funding from The City of Mt Pleasant
- 3. Possible two percent allocations from The Saginaw Chippewa Indian Tribe

The maintenance and operation of this Aerial Apparatus would be maintained by Mt. Pleasant Fire Department.

Project Timeline

Not Entered

Budget Items

Name	Cost	Quantity	Total	Category
Aerial Fire Apparatus	\$250,000.00	1	\$250,000.00	Safety/Security
AmountRequested	\$250,000.00			

Matching Funds

Name	Cost	Quantity	Total
Aerial Fire Apparatus	\$250,000.00	1	\$250,000.00
AmountMatched	\$250,000.00		

Budget Summary

Amount Requested

\$250,000.00

Amount Matched

\$250,000.00

Total Amount

\$500,000.00

Uploaded Files

Name

2Request2023 2023-09-07.doc

There are no comments to display.

City of Mount Pleasant, Michigan DEPARTMENT OF PUBLIC SAFETY

- A. Please give a brief description of the project, providing as much detail as possible. In 1997 The City of Mt Pleasant along with funding from the Saginaw Chippewa Indian Tribe purchased a 102-foot Aerial Fire Apparatus more commonly known as a ladder truck. Our current Aerial Apparatus is 27 years old and in need of replacement. The Aerial apparatus allows firefighters to reach tall buildings, such as high-rise buildings, large commercial buildings, multi-story buildings in our downtown area and on CMU campus and on Tribal properties when requested. They can provide a high vantage point for supplying water to elevated master streams, utilized for ventilation, providing an access route for firefighters and an escape route for firefighters and people they have rescued.
- **B.** Please give a brief description of the project benefits to the Tribe, Community, and governmental service area. Currently the Mt. Pleasant Fire Department is available to assist the Tribal community in any fire or rescue situation. The purchase of this new Aerial Apparatus would enable us to maintain a level of response for fire suppression and enhance our ability to provide mutual aid to the Tribal community assisting in protecting its infrastructure such as the Soaring Eagle Casino, Hotel and Water Park while increasing our capabilities. Also, our department has mutual aid agreements with all other department within the county, as well as Clare and Alma. The purchase of this Aerial Apparatus would enable us to maintain that level of service to the citizens of Mt. Pleasant and Union Township, as well as providing mutual aid to the other communities in the surrounding area.
- **C.** Please state the long-term projection of funding requirements (if applicable). The maintenance and operation of this Aerial Apparatus would be maintained by Mt. Pleasant Fire Department.

D. Cost Estimate:

The Estimated cost from our research that we have completed to purchase a comparable Aerial Apparatus is \$2,250,000. Anticipated funds for the purchase of this Aerial Fire Apparatus are from the following sources:

- 1. Resale of our current Aerial Fire Apparatus
- 2. Funding from The City of Mt Pleasant
- 3. Possible two percent allocations from The Saginaw Chippewa Indian Tribe

Overview

Project Name

Mt. Pleasant Police Vehicle and Body Camera Project

Total Requested

\$406,620.00

(amount based on the Itemized Budget total)

Applicant Project Priority

Critical

Reocurring Need?

Not Reocurring

Applicant Information

Applicant Name

plauria@mt-pleasant.org

Applicant Email

Paul Lauria

Organization

Mt. Pleasant Police and Fire Department

Address

804 E. High St

Mount Pleasant, 48858

Phone Number

9893304378

Organization Information

Primary Organization

City of Mt. Pleasant

Authorizers

adesentz@mt-pleasant.org

Status

Review

Address

320 W. Broadway

Mount Pleasant, Michigan 48858

Phone

(989) 779-5300

Fax

Categories

Safety/Security

Project Description

This project is for the replacement of 9 patrol vehicle camera systems and 30 police body worn cameras.

Our current vehicle camera system, L3 Mobile Vision was installed in 2014 and is past its service life. Many of the components are broken and are no longer available. In addition, this system cannot be upgraded to include body worn cameras that are used by police officers.

Having a totally integrated vehicle and body worn camera system is the most effective and seamless way to implement a comprehensive system. For this reason, Axon Inc was chosen as the system to meets this need. This project will be completed in its entirety in one phase. Axon Inc is a leading manufacturer of a comprehensive vehicle and body worn camera system. The Axon vehicle cameras come with the latest technology of LPR (license plate readers), body microphone for audio recordings and tamperproof automatic downloading of video evidence. The recorded events are stored in the "cloud" and access is only given to authorized personnel. This video evidence in then used in court proceedings and other matters such as citizens' complaints to verify what did or did not occur.

This project now includes the immediate implementation of 30 body worn cameras. Previous concerns pertaining to Freedom of Information Requests will be addressed if the need arises. While we expect the number of requests is going to increase significantly, we feel that ongoing reviews of workloads will address these concerns.

Benefit Description

The benefits of this project are vast. Having up-to-date high quality video equipment and software provides the community with the transparency it demands. Video evidence is the first aspect that is requested when a police officers' actions are being questioned. This video evidence provides an unbiased look at what took place during a specific incident. It eliminates the bias of the facts given by the officer and the other party involved. It allows the viewer to make their own assessment of the events that took place. The video of an incident can then be used by the police department for training officers, officer accountability, policy development and changes, civil and criminal court proceedings, as well as to build confidence and credibility with the entire community.

Funding Requirements

Maintenance of the vehicle and body cameras will be covered within the annual police department's budget.

Project Timeline

The implementation of police body and vehicle cameras will be started as soon as funding is secured. Once ordered the delivery date of the equipment and software will be provided.

Budget Items

Name	Cost	Quantity	Total	Category
Axon Patrol Vehicle Cameras	\$18,000.00	9	\$162,000.00	Safety/Security
Axon Police Body Camera, Software and Storage	\$8,154.00	30	\$244,620.00	Safety/Security
AmountRequested	\$406,620.00			

Matching Funds

Name	Cost	Quantity	Total	
No Matching Funds items have been added.				
AmountMatched	\$0.00			

Budget Summary

Amount Requested

\$406,620.00

Amount Matched

\$0.00

Total Amount

\$406,620.00

Uploaded Files

Name

Q42604144831813KUNew 2023-09-07.pdf

There are no comments to display.

Axon Enterprise, Inc. 17800 N 85th St. Scottsdale, Arizona 85255 **United States** VAT: 86-0741227

Domestic: (800) 978-2737 International: +1.800.978.2737

Issued: 09/27/2022

Quote Expiration: 11/15/2022

EST Contract Start Date: 12/01/2022 Account Number: 323132

> Payment Terms: N30 Delivery Method:

SHIP TO	BILL TO
Business; Delivery; Invoice-804 E High St	Mount Pleasant Police Dept MI
804 E High St	804 E High St
Mount Pleasant, MI 48858-3595	Mount Pleasant, MI 48858-3595
USA	USA
	Email:

SALES REPRESENTATIVE	PRIMARY CONTACT
Keith Utter	Paul Lauria
Phone:	Phone: (989) 779-5108
Email: kutter@axon.com	Email: plauria@mt-pleasant.org
Fax:	Fax: (989) 773-4020

Program Length	60 Months
TOTAL COST	\$406,620.72
ESTIMATED TOTAL W/ TAX	\$418,091.07

Bundle Savings	\$113,584.38
Additional Savings	\$10,802.30
TOTAL SAVINGS	\$124,386.68

PAYMENT PLAN		
PLAN NAME	INVOICE DATE	AMOUNT DUE
Year 1	Nov, 2022	\$62,280.00
Year 1	Jun, 2023	\$17,683.36
True Up	Jun, 2023	\$6,804.00
Year 2	Nov, 2023	\$62,280.00
Year 2	Nov, 2023	\$17,683.34
Year 3	Nov, 2024	\$62,280.00
Year 3	Nov, 2024	\$17,683.34
Year 4	Nov, 2025	\$62,280.00

Year 4	Nov, 2025	\$17,683.34
Year 5	Nov, 2026	\$62,280.00
Year 5	Nov, 2026	\$17,683.34

BILLED ON FULFILLMENT		
PLAN NAME	INVOICE DATE	AMOUNT DUE
None	As Fulfilled	\$0.00

Quote Details

Bundle Summary		
Item	Description	QTY
Core+	2021 Core+	30
Fleet3A	Fleet 3 Advanced	9
DynamicBundle	Dynamic Bundle	1
DynamicBundle	Dynamic Bundle	1

Bundle: 2021 Core+ Quantity:	30 Start: 1	2/1/2022 End: 11/30/2027 Total: 286200 USD	
Category	Item	Description	QTY
Bundle Scaler	999999	BUNDLE SCALER	1
Bundle Scaler	999999	BUNDLE SCALER	1
Signal Sidearm Kit	75015	SIGNAL SIDEARM KIT	30
Warranty	80465	EXT WARRANTY, MULTI-BAY DOCK (TAP)	4
Camera Warranty	80464	EXT WARRANTY, CAMERA (TAP)	30
E.com License	73746	PROFESSIONAL EVIDENCE.COM LICENSE	30
Respond License	73449	RESPOND DEVICE LICENSE	30
Multi-bay Dock Refresh 1	73689	MULTI-BAY BWC DOCK 1ST REFRESH	4
Device Storage	73686	EVIDENCE.COM UNLIMITED AXON DEVICE STORAGE	30
Auto Tagging	73682	AUTO TAGGING LICENSE	30
Camera Refresh 1 with Spares	73309	AXON CAMERA REFRESH ONE	31
Camera Refresh 2 with Spares	73310	AXON CAMERA REFRESH TWO	31
Multi-bay Dock Refresh 2	73688	MULTI-BAY BWC DOCK 2ND REFRESH	4

A La Carte Storage	73683	10 GB EVIDENCE.COM A-LA-CART STORAGE-	90
Spare Camera Warranty	80464	EXT WARRANTY, CAMERA (TAP)	1
Signal Sidearm Batteries	71044	BATTERY, SIGNAL SIDEARM, CR2430 SINGLE PACK	60
·			
Dock Mount	70033	WALL MOUNT BRACKET, ASSY, EVIDENCE.COM DOCK	1
Dock Mount Dock Power Cord	70033 71019	WALL MOUNT BRACKET, ASSY, EVIDENCE.COM DOCK NORTH AMER POWER CORD FOR AB3 8-BAY, AB2 1-BAY / 6-BAY DOCK	1 1
		WALL MOUNT BRACKET, ASSY, EVIDENCE.COM DOCK NORTH AMER POWER CORD FOR AB3 8-BAY, AB2 1-BAY / 6-BAY DOCK AXON BODY 3 - NA10 - US - BLK - RAPIDLOCK	1 1 30
Dock Power Cord	71019	NORTH AMER POWER CORD FOR AB3 8-BAY, AB2 1-BAY / 6-BAY DOCK	<u>'</u>
Dock Power Cord Camera	71019 73202	NORTH AMER POWER CORD FOR AB3 8-BAY, AB2 1-BAY / 6-BAY DOCK AXON BODY 3 - NA10 - US - BLK - RAPIDLOCK	<u> </u>
Dock Power Cord Camera Spare Camera	71019 73202 73202	NORTH AMER POWER CORD FOR AB3 8-BAY, AB2 1-BAY / 6-BAY DOCK AXON BODY 3 - NA10 - US - BLK - RAPIDLOCK AXON BODY 3 - NA10 - US - BLK - RAPIDLOCK	30
Dock Power Cord Camera Spare Camera Camera Mount	71019 73202 73202 74028	NORTH AMER POWER CORD FOR AB3 8-BAY, AB2 1-BAY / 6-BAY DOCK AXON BODY 3 - NA10 - US - BLK - RAPIDLOCK AXON BODY 3 - NA10 - US - BLK - RAPIDLOCK WING CLIP MOUNT, AXON RAPIDLOCK	30 1 33

Other	80395	EXT WARRANTY, TASER 7 HANDLE	30
Other	80395	EXT WARRANTY, TASER 7 HANDLE	1
Other	80374	EXT WARRANTY, TASER 7 BATTERY PACK	36
Other	80396	EXT WARRANTY, TASER 7 SIX BAY DOCK	1

Bundle: Fleet 3 Advanced	Quantity: 9 St	eart: 7/1/2023 End: 11/30/2027 Total: 88416.72 USD	
Category	Item	Description	QTY
Bundle Scaler	999999	BUNDLE SCALER	1
Storage	80410	FLEET, UNLIMITED STORAGE, 1 CAMERA	18
E.com License	80400	FLEET, VEHICLE LICENSE	9
ALPR License	80401	FLEET 3, ALPR LICENSE, 1 CAMERA	9
Respond License	80402	RESPOND DEVICE LICENSE - FLEET 3	9
Camera Kit & Warranty	72036	FLEET 3 STANDARD 2 CAMERA KIT	9
Vehicle Installation	73391	FLEET 3 NEW INSTALLATION (PER VEHICLE)	9
Camera Refresh	72040	FLEET REFRESH, 2 CAMERA KIT	9
Axon Signal Unit	70112	AXON SIGNAL UNIT	9
Other	80495	EXT WARRANTY, FLEET 3, 2 CAMERA KIT	9
Other	80379	EXT WARRANTY, AXON SIGNAL UNIT	9

Bundle: Dynamic Bundle	Quantity: 1 S	start: 12/1/2022	End: 6/30/2023	Total: 6804 USD	
Category	Item	Description			QTY
Other	80462	FLEET 3 ADVA	NCED BUNDLE WITH 1	TAP TRUE UP	9

Individual Items USD			
Category	Item	Description	QTY
Other	73447	RESPOND DEVICE TO RESPOND DEVICE PLUS UPGRADE LICENSE	30

Tax is estimated based on rates applicable at date of quote and subject to change at time of invoicing. If a tax exemption certificate should be applied, please submit prior to invoicing.

Standard Terms and Conditions

Axon Enterprise Inc. Sales Terms and Conditions

Axon Master Services and Purchasing Agreement:

This Quote is limited to and conditional upon your acceptance of the provisions set forth herein and Axon's Master Services and Purchasing Agreement (posted at www.axon.com/legal/sales-terms-and-conditions), as well as the attached Statement of Work (SOW) for Axon Fleet and/or Axon Interview Room purchase, if applicable. In the event you and Axon have entered into a prior agreement to govern all future purchases, that agreement shall govern to the extent it includes the products and services being purchased and does not conflict with the Axon Customer Experience Improvement Program Appendix as described below.

ACEIP:

The Axon Customer Experience Improvement Program Appendix, which includes the sharing of de-identified segments of Agency Content with Axon to develop new products and improve your product experience (posted at www.axon.com/legal/sales-terms-and-conditions), is incorporated herein by reference. By signing below, you agree to the terms of the Axon Customer Experience Improvement Program.

Acceptance of Terms:

Any purchase order issued in response to this Quote is subject solely to the above referenced terms and conditions. By signing below, you represent that you are lawfully able to enter into contracts. If you are signing on behalf of an entity (including but not limited to the company, municipality, or government agency for whom you work), you represent to Axon that you have legal authority to bind that entity. If you do not have this authority, please do not sign this Quote.

Signature	Date Signed

9/27/2022

FLEET STATEMENT OF WORK BETWEEN AXON ENTERPRISE AND AGENCY

Introduction

This Statement of Work ("SOW") has been made and entered into by and between Axon Enterprise, Inc. ("AXON"), and Mount Pleasant Police Dept. - MI the ("AGENCY") for the purchase of the Axon Fleet in-car video solution ("FLEET") and its supporting information, services and training. (AXON Technical Project Manager/The AXON installer)

Purpose and Intent

AGENCY states, and AXON understands and agrees, that Agency's purpose and intent for entering into this SOW is for the AGENCY to obtain from AXON deliverables, which used solely in conjunction with AGENCY's existing systems and equipment, which AGENCY specifically agrees to purchase or provide pursuant to the terms of this SOW.

This SOW contains the entire agreement between the parties. There are no promises, agreements, conditions, inducements, warranties or understandings, written or oral, expressed or implied, between the parties, other than as set forth or referenced in the SOW.

Acceptance

Upon completion of the services outlined in this SOW, AGENCY will be provided a professional services acceptance form ("Acceptance Form"). AGENCY will sign the Acceptance Form acknowledging that services have been completed in substantial conformance with this SOW and the Agreement. If AGENCY reasonably believes AXON did not complete the professional services in conformance with this SOW, AGENCY must notify AXON in writing of the specific reasons within seven (7) calendar days from delivery of the Acceptance Form. AXON will remedy the issues to conform with this SOW and re-present the Acceptance Form for signature. If AXON does not receive the signed Acceptance Form or written notification of the reasons for rejection within 7 calendar days of the delivery of the Acceptance Form, AGENCY will be deemed to have accepted the services in accordance to this SOW.

Force Majeure

Neither party hereto shall be liable for delays or failure to perform with respect to this SOW due to causes beyond the party's reasonable control and not avoidable by diligence.

Schedule Change

Each party shall notify the other as soon as possible regarding any changes to agreed upon dates and times of Axon Fleet in-car Solution installation-to be performed pursuant of this Statement of Work.

Axon Fleet Deliverables

Typically, within (30) days of receiving this fully executed SOW, an AXON Technical Project Manager will deliver to AGENCY's primary point of contact via electronic media, controlled documentation, guides, instructions and videos followed by available dates for the initial project review and customer readiness validation. Unless otherwise agreed upon by AXON, AGENCY may print and reproduce said documents for use by its employees only.

Security Clearance and Access

Upon AGENCY's request, AXON will provide the AGENCY a list of AXON employees, agents, installers or representatives which require access to the AGENCY's facilities in order to perform Work pursuant of this Statement of Work. AXON will ensure that each employee, agent or representative has been informed or and consented to a criminal background investigation by AGENCY for the purposes of being allowed access to AGENCY's facilities. AGENCY is responsible for providing AXON with all required instructions and documentation accompanying the security background check's requirements.

Training

AXON will provide training applicable to Axon Evidence, Cradlepoint NetCloud Manager and Axon Fleet application in a train-the-trainer style method unless otherwise agreed upon between the AGENCY and AXON.

Local Computer

AGNECY is responsible for providing a mobile data computer (MDC) with the same software, hardware, and configuration that AGENCY personnel will use with the AXON system being installed. AGENCY is responsible for making certain that any and all security settings (port openings, firewall settings, antivirus software, virtual private network, routing, etc.) are made prior to the installation, configuration and testing of the aforementioned deliverables.

Network

AGENCY is responsible for making certain that any and all network(s) route traffic to appropriate endpoints and AXON is not liable for network breach, data interception, or loss of data due to misconfigured firewall settings or virus infection, except to the extent that such virus or infection is caused, in whole or in part, by defects in the deliverables.

Cradlepoint Router

When applicable, AGENCY must provide AXON Installers with temporary administrative access to Cradlepoint's <u>NetCloud Manager</u> to the extent necessary to perform Work pursuant of this Statement of Work.

Evidence.com

AGENCY must provide AXON Installers with temporary administrative access to Axon Evidence.com to the extent necessary to perform Work pursuant of this SOW.

Wireless Upload System

If purchased by the AGENCY, on such dates and times mutually agreed upon by the parties, AXON will install and configure into AGENCY's existing network a wireless network infrastructure as identified in the AGENCY's binding quote based on conditions of the sale.

VEHICLE INSTALLATION

Preparedness

On such dates and times mutually agreed upon by the parties, the AGENCY will deliver all vehicles to an AXON Installer less weapons and items of evidence. Vehicle(s) will be deemed 'out of service' to the extent necessary to perform Work pursuant of this SOW.

Existing Mobile Video Camera System Removal

On such dates and times mutually agreed upon by the parties, the AGENCY will deliver all vehicles to an AXON Installer which will remove from said vehicles all components of the existing mobile video camera system unless otherwise agreed upon by the AGENCY.

Major components will be salvaged by the AXON Installer for auction by the AGENCY. Wires and cables are not considered expendable and will not be salvaged. Salvaged components will be placed in a designated area by the AGENCY within close proximity of the vehicle in an accessible work space.

Prior to removing the existing mobile video camera systems, it is both the responsibility of the AGENCY and the AXON Installer to test the vehicle's systems' operation to identify and operate, documenting any existing component or system failures and in detail, identify which components of the existing mobile video camera system will be removed by the AXON Installer.

In-Car Hardware/Software Delivery and Installation

On such dates and times mutually agreed upon by the parties, the AGENCY will deliver all vehicles to an AXON Installer, who will install and configure in each vehicle in accordance with the specifications detailed in the system's installation manual and its relevant addendum(s). Applicable in-car hardware will be installed and configured as defined and validated by the AGENCY during the pre-deployment discovery process.

If a specified vehicle is unavailable on the date and time agreed upon by the parties, AGENCY will provide a similar vehicle for the installation process. Delays due to a vehicle, or substitute vehicle, not being available at agreed upon dates and times may results in additional fees to the AGENCY. If the AXON Installer determines that a vehicle is not properly prepared for installation ("Not Fleet Ready"), such as a battery not being properly charged or properly up-fit for in-service, field operations, the issue shall be reported immediately to the AGENCY for resolution and a date and time for the future installation shall be agreed upon by the parties.

Upon completion of installation and configuration, AXON will systematically test all installed and configured in-car hardware and software to ensure that ALL functions of the hardware and software are fully operational and that any deficiencies are corrected unless otherwise agreed upon by the AGENCY, installation, configuration, test and the correct of any deficiencies will be completed in each vehicle accepted for installation.

Prior to installing the Axon Fleet camera systems, it is both the responsibility of the AGENCY and the AXON Installer to test the vehicle's existing systems' operation to identify, document any existing component or vehicle systems' failures. Prior to any vehicle up-fitting the AXON Installer will introduce the system's components, basic functions, integrations and systems overview along with reference to AXON approved, AGENCY manuals, guides, portals and videos. It is both the responsibility of the AGENCY and the AXON Installer to agree on placement of each components, the antenna(s), integration recording trigger sources and customer preferred power, ground and ignition sources prior to permanent or temporary installation of an Axon Fleet camera solution in each vehicle type. Agreed placement will be documented by the AXON Installer.

AXON welcomes up to 5 persons per system operation training session per day, and unless otherwise agreed upon by the AGENCY, the first vehicle will be used for an installation training demonstration. The second vehicle will be used for an assisted installation training demonstration. The installation training session is customary to any AXON Fleet installation service regardless of who performs the continued Axon Fleet system installations.

The customary training session does not 'certify' a non-AXON Installer, customer-employed Installer or customer 3rd party Installer, since the AXON Fleet products does not offer an Installer certification program. Any work performed by non-AXON Installer, customer-employed Installer or customer 3rd party Installer is not warrantied by AXON, and AXON is not liable for any damage to the vehicle and its existing systems and AXON Fleet hardware.

Project Name

Pickard and Bradley Traffic Signal

Total Requested

\$84,100.00

(amount based on the Itemized Budget total)

Applicant Project Priority

High

Reocurring Need?

Not Reocurring

Applicant Information

Applicant Name

jmoore@mt-pleasant.org

Applicant Email

Jason Moore

Organization

City of MtPleasant

Address

320 W Broadway St MOUNT PLEASANT , 48858

Phone Number

9897795405

Organization Information

Primary Organization

City of Mt. Pleasant

Authorizers

adesentz@mt-pleasant.org

Status

Review

Address

320 W. Broadway

Mount Pleasant, Michigan 48858

Phone

(989) 779-5300

Fax

Categories

Safety/Security

Project Description

This project will install a new traffic signal at the intersection of Bradley and Pickard Streets.

Benefit Description

Early in 2022 the Isabella County Road Commission received notice of grant funding available to install a traffic signal at the intersection of Pickard and Bradley Streets. The county engineer has determined that the intersection meets warrants and that a signal would be an appropriate upgrade for the intersection.

The grant will cover just over half the project cost. Since the intersection includes two city street segments, the City will be covering 50% of the excess costs. This expense was not in the City's Capital Improvement Plan, so it is challenging to incorporate this cost share into our budget. Funding through a Tribal 2% grant will ensure that our portion of the project is covered.

Funding Requirements

Routine maintenance will be covered by the operations budget.

Project Timeline

Fall 2023

Budget Items

Name	Cost	Quantity	Total	Category
Pickard and Bradley Traffic Signal	\$84,100.00	1	\$84,100.00	Safety/Security
AmountRequested	\$84,100.00			

Matching Funds

	Name	Cost	Quantity	Total		
No Matching Funds items have been added.						
	AmountMatched	\$0.00				

Budget Summary

Amount Requested

\$84,100.00

Amount Matched

\$0.00

Total Amount

\$84,100.00

Uploaded Files

Ν	a	m	e

No files have been uploaded.

Project Name

Asphalt Overlays and Street Resurfacing

Total Requested

\$976,000.00

(amount based on the Itemized Budget total)

Applicant Project Priority

Medium

Reocurring Need?

Not Reocurring

Applicant Information

Applicant Name

jmoore@mt-pleasant.org

Applicant Email

Jason Moore

Organization

City of MtPleasant

Address

320 W Broadway St MOUNT PLEASANT , 48858

Phone Number

9897795405

Organization Information

Primary Organization

City of Mt. Pleasant

Authorizers

adesentz@mt-pleasant.org

Status

Review

Address

320 W. Broadway

Mount Pleasant, Michigan 48858

Phone

(989) 779-5300

Fax

Categories

- Infrastructure
- Transportation

Project Description

The city's engineering department utilizes an in-depth process to develop our capital plan for the maintenance of our street network. It involves regular evaluation of the street surface to determine the right "mix of fixes" to maintain the system as effectively as possible. Generally, our mix of fixes includes crack sealing, thin overlays, mill and overlays, and full reconstructs. We strive to schedule these projects at the most effective point in a street segment's maintenance curve to get the highest return on investment in terms of service life that we can.

Our streets spend most of their useful life in a cycle of mill/overlays and thin overlays since these are far more effective treatments on a

dollar/year basis than full reconstructs. Reconstruction is around 50x more expensive than overlays. With a 2% contribution by the Saginaw Chippewa Indian Tribe, the City's overlay program can continue into the future and ensure that we avoid costly reconstructs unnecessarily.

Benefit Description

The City's overlay program allows us to stay on top of maintenance in our street system. Thin overlays are one of the most cost-effective treatments in the "mix of fixes" that we use and being able to fund the program fully means that we can incorporate full reconstructs into our capital improvement plan as the need arises. Any funding provided helps ensure that our street maintenance program continues at a sustainable pace.

With the reduction in population accounted for in the 2020 census the city's road maintenance funding has decreased significantly. Overlays will be even more important to accomplish with this decrease in funding.

Funding Requirements

The City's overlay program is ongoing with projects of various size and location happening normally every year.

Project Timeline

Summer of 2024

Budget Items

Name	Cost	Quantity	Total	Category
Major Street Overlays	\$427,000.00	1	\$427,000.00	Transportation
Local Street Overlays	\$537,000.00	1	\$537,000.00	Transportation
Parking Lot 1 Overlay	\$12,000.00	1	\$12,000.00	Transportation
AmountRequested	\$976,000.00			

Matching Funds

Name	Cost	Quantity	Total		
No Matching Funds items have been added.					
AmountMatched	\$0.00				

Budget Summary

Amount Requested

\$976,000.00

Amount Matched

\$0.00

Total Amount

\$976,000.00

Uploaded Files

Name

Listofstreetstobeoverlayedin2024 2023-09-06.docx

List of streets to be overlayed in 2024

Locals

Adams: Broadway to Pickard Arnold: Illinois to Broadway Elm: Bradley to Henry

Edgewood: Broomfield to Deming Deming: Broomfield to Edgewood

May: Watson to Sansote

Majors

Brown: Broadway to Pickard Broadway Bridge Deck

Project Name

Broadway Street Storm Sewer Upgrade

Total Requested

\$215,000.00

(amount based on the Itemized Budget total)

Applicant Project Priority

Medium

Reocurring Need?

Not Reocurring

Applicant Information

Applicant Name

jmoore@mt-pleasant.org

Applicant Email

Jason Moore

Organization

City of MtPleasant

Address

320 W Broadway St

MOUNT PLEASANT, 48858

Phone Number

9897795405

Organization Information

Primary Organization

City of Mt. Pleasant

Authorizers

adesentz@mt-pleasant.org

Status

Review

Address

320 W. Broadway

Mount Pleasant, Michigan 48858

Phone

(989) 779-5300

Fax

Categories

- Infrastructure
- Transportation

Project Description

This request is for funding to upsize storm sewer mains and structures on Broadway Street from Fancher to Mission. Based on the analysis provided by the Multi-Jurisdictional Stormwater Master Plan that was accomplished with a previous two-percent grant, this sewer will need upgrading to provide adequate service to the upstream areas.

Benefit Description

With the recent, significant, decrease in funding for our street network from the state of Michigan, storm sewer upgrades will need to be funded through other means. If funded, this project will be able to be done along side the road work meaning less disruption for residents and more effect use of public funds.

Funding Requirements

Future funding requirements for operations and maintenance of the stormwater infrastructure are roughly equal to that of the current infrastructure.

Project Timeline

Summer of 2024

Budget Items

Name	Cost	Quantity	Total	Category
Broadway Storm Sewer Upgrade	\$215,000.00	1	\$215,000.00	Infrastructure
AmountRequested	\$215,000.00			

Matching Funds

Name	Cost	Quantity	Total				
No Matching Funds items have been added.							
AmountMatched	\$0.00						

Budget Summary

Amount Requested

\$215,000.00

Amount Matched

\$0.00

Total Amount

\$215,000.00

Uploaded Files

Name	e
------	---

No files have been uploaded.

Project Name

Close Crawford Rd Sidewalk Gap

Total Requested

\$23,000.00

(amount based on the Itemized Budget total)

Applicant Project Priority

Medium

Reocurring Need?

Not Reocurring

Applicant Information

Applicant Name

jmoore@mt-pleasant.org

Applicant Email

Jason Moore

Organization

City of MtPleasant

Address

320 W Broadway St

MOUNT PLEASANT, 48858

Phone Number

9897795405

Organization Information

Primary Organization

City of Mt. Pleasant

Authorizers

adesentz@mt-pleasant.org

Status

Review

Address

320 W. Broadway

Mount Pleasant, Michigan 48858

Phone

(989) 779-5300

Fax

Categories

- Infrastructure
- Safety/Security
- Transportation

Project Description

This project is intended to close a gap in the existing sidewalk network to create a continuous sidewalk in various highly traveled pathways. The gaps in the sidewalk were the result of past developments that were not required to install sidewalks, or developments that are disconnected from existing sidewalks.

1) Crawford Road south of Broomfield Road - There is a gap in the sidewalk from the WestPoint Village apartments to Broomfield Road. This apartment development is disconnected from existing sidewalk.

A 2% Tribal contribution of \$23,000 will allow us to fill in this gap and complete this sidewalk in a highly traveled pedestrian area.

Benefit Description

Crawford Road sidewalk section will benefit the community along with Central Michigan University, as this sidewalk is a direct connection from the WestPoint Village apartments and Central Michigan University. Crawford Road is a highly traveled roadway that also sees higher speeds, the addition of a sidewalk in this location would help to provide safety to the pedestrian traveling this stretch of road.

Funding Requirements

None.

Project Timeline

Summer 2024

Budget Items

Name	Cost	Quantity	Total	Category
Work Items	\$23,000.00	1	\$23,000.00	Safety/Security
AmountRequested	\$23,000.00			

Matching Funds

Name	Cost	Quantity	Total			
No Matching Funds items have been added.						
AmountMatched	\$0.00					

Budget Summary

Amount Requested

\$23,000.00

Amount Matched

\$0.00

Total Amount

\$23,000.00

Uploaded Files

Ν	a	m	16
1	a		ľ

No files have been uploaded.

Project Name

Kinney Street Mill and Overlay

Total Requested

\$290,000.00

(amount based on the Itemized Budget total)

Applicant Project Priority

Medium

Reocurring Need?

Not Reocurring

Applicant Information

Applicant Name

jmoore@mt-pleasant.org

Applicant Email

Jason Moore

Organization

City of MtPleasant

Address

320 W Broadway St MOUNT PLEASANT , 48858

Phone Number

9897795405

Organization Information

Primary Organization

City of Mt. Pleasant

Authorizers

adesentz@mt-pleasant.org

Status

Review

Address

320 W. Broadway

Mount Pleasant, Michigan 48858

Phone

(989) 779-5300

Fax

Categories

- Infrastructure
- Transportation

Project Description

The city's engineering department utilizes an in-depth process to develop our capital plan for the maintenance of our street network. It involves regular evaluation of the street surface to determine the right "mix of fixes" to maintain the system as effectively as possible. Generally, our mix of fixes includes crack sealing, thin overlays, mill and overlays, and full reconstructs. We strive to schedule these projects at the most effective point in a street segment's maintenance curve to get the highest return on investment in terms of service life that we can.

Our streets spend most of their useful life in a cycle of mill/overlays and thin overlays since these are far more effective treatments on a dollar/year basis than full reconstructs. Reconstruction is around 50x more expensive than overlays. However, we have streets in the city that have had their curb pans overlayed causing issues with being able to stay in the overlay cycle.

In the past contractors have been unwilling to mill streets that have overlayed curb pans due to constructability issues. They have been

concerned about damaging the milling machine by striking the concrete curb or having drainage issues after leaving asphalt in the curb. Recently our engineering team worked with our local asphalt contractor to produce a set of specifications that we think will allow us to do a mill and overlay project on these street segments. This project, if funded, would be a proof of concept and allow us to program our capital improvement plan more effectively in the future utilizing this new "fix".

Benefit Description

With the recent, significant, decrease in funding for our street network from the state of Michigan, we must find more cost-effective treatments to maintain our streets. This project would help us greatly in that effort.

Funding Requirements

The City's overlay program is ongoing with projects of various size and location happening normally every year.

Project Timeline

Summer of 2024

Budget Items

Name	Cost	Quantity	Total	Category
Mill and Overlay of Kinney from Michigan to Broadway	\$290,000.00	1	\$290,000.00	Infrastructure
AmountRequested	\$290,000.00			

Matching Funds

Name	Cost	Quantity	Total
No Matching Funds items have been added.			
AmountMatched	\$0.00		

Budget Summary

Amount Requested

\$290,000.00

Amount Matched

\$0.00

Total Amount

\$290,000.00

Uploaded Files

Name

KinneyEstimate 2023-09-06.pdf

City of MtPleasant

Estimate Breakdown Report

Project Number: 268 Project Engineer: Stacie Tewari
Estimate Number: 1 Date Created: 8/28/2023

Estimate Number: 1 Date Created: 8/28/2023

Project Type: Resurfacing Date Edited: 8/28/2023

Kinney: Michigan to Pickard

Fed/State #:
Fed Item:

Description: Control Section:

Line	Pay Item	Description	Quantity	Units	Unit Price	Total
Break	down ID:					
0001	2040020	Curb and Gutter, Rem	160.000	Ft	\$17.00	\$2,720.00
0002	2040050	Pavt, Rem	45.000	Syd	\$17.00	\$765.00
0003	2040055	Sidewalk, Rem	168.000	Syd	\$13.75	\$2,310.00
0004	2080014	Erosion Control, Filter Bag	4.000	Ea	\$115.00	\$460.00
0005	3010002	Subbase, CIP	19.000	Cyd	\$11.50	\$218.50
0006	4037050	_ Dr Structure Cover, STM, Modified	1.000	Ea	\$1,525.00	\$1,525.00
0007	5010002	Cold Milling HMA Surface	13,380.000	Syd	\$3.25	\$43,485.00
8000	5010025	Hand Patching	9.000	Ton	\$340.00	\$3,060.00
0009	5010033	HMA, 13A	1,545.000	Ton	\$102.00	\$157,590.00
0010	8030010	Detectable Warning Surface	80.000	Ft	\$85.00	\$6,800.00
0011	8030030	Curb Ramp Opening, Conc	160.000	Ft	\$34.00	\$5,440.00
0012	8030044	Sidewalk, Conc, 4 inch	400.000	Sft	\$5.00	\$2,000.00
0013	8032002	Curb Ramp, Conc, 6 inch	1,365.000	Sft	\$9.75	\$13,308.75
0014	8167001	_ Restoration, Modified	215.000	Ft	\$325.00	\$69,875.00

Breakdown ID Total: \$309,557.25

Estimate Total: \$309,557.25

Contract # LS Resurf/Recon (Various)

MERL: 2022.6.0

Location:

Project Name

Pickard Storm Sewer

Total Requested

\$247,780.00

(amount based on the Itemized Budget total)

Applicant Project Priority

High

Reocurring Need?

Not Reocurring

Applicant Information

Applicant Name

jmoore@mt-pleasant.org

Applicant Email

Jason Moore

Organization

City of MtPleasant

Address

320 W Broadway St MOUNT PLEASANT , 48858

Phone Number

9897795405

Organization Information

Primary Organization

City of Mt. Pleasant

Authorizers

adesentz@mt-pleasant.org

Status

Review

Address

320 W. Broadway

Mount Pleasant, Michigan 48858

Phone

(989) 779-5300

Fax

Categories

• Infrastructure

Project Description

This request is for funding to upsize large-diameter storm sewer structures at the Pickard and Brown Street intersection. A large trunk line storm sewer that serves much of the east side of the City of Mt. Pleasant runs down Brown Street and crosses Pickard Street. Based on the analysis provided by the Multi-Jurisdictional Stormwater Master Plan that was accomplished with a previous two-percent grant, this trunk line sewer will need upgrading to provide adequate service to the upstream areas.

MDOT will be reconstructing Pickard Street in 2023-2024 and incorporating storm work into the project at that time will save significant costs associated with traffic control and contractor mobilization. The engineering consultant has incorporated the upsizing into the plans and MDOT is prepared to do the work if provided funding from the City.

Benefit Description

This project will allow for future upgrades to the stormwater collection system in order to meet the demands of future storm events.

Funding Requirements

Future funding requirements for operations and maintenance of the stormwater infrastructure are roughly equal to that of the current infrastructure.

Project Timeline

Not Entered

Budget Items

Name	Cost	Quantity	Total	Category
Work Items	\$222,780.00	1	\$222,780.00	Infrastructure
Mobilization	\$20,000.00	1	\$20,000.00	Infrastructure
Traffic Control	\$5,000.00	1	\$5,000.00	Infrastructure
AmountRequested	\$247,780.00			

Matching Funds

Name	Cost	Quantity	Total
Work Items	\$242,780.00	1	\$242,780.00
Mobilization	\$20,000.00	1	\$20,000.00
Traffic Control	\$5,000.00	1	\$5,000.00
Previous 2% Funding	\$20,000.00	1	\$20,000.00
AmountMatched	\$287,780.00		

Budget Summary

Amount Requested

\$247,780.00

Amount Matched

\$287,780.00

Total Amount

\$535,560.00

Uploaded Files

Name

No files have been uploaded.

Project Name

Automatic Water Meters

Total Requested

\$59,940.00

(amount based on the Itemized Budget total)

Applicant Project Priority

Medium

Reocurring Need?

Not Reocurring

Applicant Information

Applicant Name

jmoore@mt-pleasant.org

Applicant Email

Jason Moore

Organization

City of MtPleasant

Address

320 W Broadway St MOUNT PLEASANT , 48858

Phone Number

9897795405

Organization Information

Primary Organization

City of Mt. Pleasant

Authorizers

adesentz@mt-pleasant.org

Status

Review

Address

320 W. Broadway

Mount Pleasant, Michigan 48858

Phone

(989) 779-5300

Fax

Categories

• Infrastructure

Project Description

Under our water meter replacement program that began in 1998, water meters that meet usage (total gallons registered) and age (years of service) criteria are replaced to ensure accuracy and proper operation.

The Water Distribution Team is currently replacing existing water meters as they fail or are due for replacement with an Advanced Metering Infrastructure (AMI) enabled meters. Due to new technology that promises more cost-effectiveness and better industry standardization, the AMI system is an obvious choice. Installation of these AMI meters will help ensure correct and timely billing and will reduce time spent reading meters. Locations that greatly benefit from these meters include buildings with security systems designed to limit access to the public and large complexes with spread-out buildings. AMI allows utility billing to directly access the data from meters through wireless networks.

Funding of this project will allow the city to double the number of installations that we are able to do with current funding, allowing for efficiency benefits to be realized sooner for the water system.

Benefit Description

Savings will come from the attrition of the part time meter reader positions, elimination of touch pads, fewer final reads, along with real time data.

Funding Requirements

Meter replacement is a continuous and required process and will require perpetual funding that will be incorporated into users rates.

Project Timeline

2023-2024

Budget Items

Name	Cost	Quantity	Total	Category
Automatic Water Meters (5/8 Residential Meters)	\$370.00	162	\$59,940.00	Infrastructure
AmountRequested	\$59,940.00			

Matching Funds

Name	Cost	Quantity	Total
Normal Meter Replacements (Various Sizes)	\$60,000.00	1	\$60,000.00
AmountMatched	\$60,000.00		

Budget Summary

Amount Requested

\$59,940.00

Amount Matched

\$60,000.00

Total Amount

\$119,940.00

Uploaded Files

Name

No files have been uploaded.

Project Name

Lime Disposal

Total Requested

\$215,000.00

(amount based on the Itemized Budget total)

Applicant Project Priority

High

Reocurring Need?

Not Reocurring

Applicant Information

Applicant Name

jmoore@mt-pleasant.org

Applicant Email

Jason Moore

Organization

City of MtPleasant

Address

320 W Broadway St

MOUNT PLEASANT, 48858

Phone Number

9897795405

Organization Information

Primary Organization

City of Mt. Pleasant

Authorizers

adesentz@mt-pleasant.org

Status

Review

Address

320 W. Broadway

Mount Pleasant, Michigan 48858

Phone

(989) 779-5300

Fax

Categories

- Environmental
- Infrastructure

Project Description

The water treatment plant softens water using a chemical precipitation process. Lime residual is produced as part of this treatment process. This is a required and ongoing project.

Benefit Description

This is a project that must be completed to ensure continued ability to produce softened drinking water. Lime residual removal is required every 3-5 years depending on the amount produced per year. Additional funding would allow us to remove an amount in 2024 to make up for the lack of removal caused by increased costs realized since 2019.

Funding Requirements

This project is a part of an ongoing Asset Management Program that is funded by the Capitol Improvement Planning process. The city was previously awarded a 2% grant in 2021 for lime residual removal.

Project Timeline

Summer 2024

Budget Items

Name	Cost	Quantity	Total	Category
Lime Disposal	\$215,000.00	1	\$215,000.00	Environmental
AmountRequested	\$215,000.00			

Matching Funds

Name	Cost	Quantity	Total
Lime Disposal	\$429,000.00	1	\$429,000.00
AmountMatched	\$429,000.00		

Budget Summary

Amount Requested

\$215,000.00

Amount Matched

\$429,000.00

Total Amount

\$644,000.00

Uploaded Files

Name	
No files have been uploaded.	

Project Name

Food Waste/ Organics Receiving

Total Requested

\$300,000.00

(amount based on the Itemized Budget total)

Applicant Project Priority

Medium

Reocurring Need?

Not Reocurring

Applicant Information

Applicant Name

jmoore@mt-pleasant.org

Applicant Email

Jason Moore

Organization

City of MtPleasant

Address

320 W Broadway St

MOUNT PLEASANT, 48858

Phone Number

9897795405

Organization Information

Primary Organization

City of Mt. Pleasant

Authorizers

adesentz@mt-pleasant.org

Status

Review

Address

320 W. Broadway

Mount Pleasant, Michigan 48858

Phone

(989) 779-5300

Fax

Categories

- Environmental
- Infrastructure

Project Description

The City of Mt. Pleasant, Water Resource Recovery Team, worked with professors and a senior design team from CMU to pilot receiving food waste into our anaerobic digesters to study the effects of increased organics on gas production. Based on this data and other research, the City of Mt Pleasant envisions constructing a food/organic waste receiving station to accept food waste from CMU and other establishments in the community. The food waste receiving station will properly prepare the food waste and pump it into our anaerobic digester for treatment.

In 2022, the WRRF team participated in a Next Cycle I2P3 challenge track through which \$500,000 in funding from EGLE was pledged to move forward with the project. Our engineering firm's probable opinion was a total package price of \$800,000 for which we are seeking additional funding.

Benefit Description

This project will benefit the tribe and community by providing a local area for disposal of food and organic waste while contributing to a circular economy. Diverting food waste away from landfills and repurposing it as feedstock for our existing digesters reduces methane production from landfills, lowers natural gas usage, our carbon footprint, and produces a beneficially reusable bio-solid that can be directly applied to fields as a soil amendment.

Funding Requirements

None.

Project Timeline

Anticipated start date on this project is 3rd or 4th quarter of 2024.

Budget Items

Name	Cost	Quantity	Total	Category
Food Waste Receiving Equipment	\$300,000.00	1	\$300,000.00	Infrastructure
AmountRequested	\$300,000.00			

Matching Funds

Name	Cost	Quantity	Total
Food Waste Receiving Equipment (NextCycle Grant)	\$500,000.00	1	\$500,000.00
AmountMatched	\$500,000.00		

Budget Summary

Amount Requested

\$300,000.00

Amount Matched

\$500,000.00

Total Amount

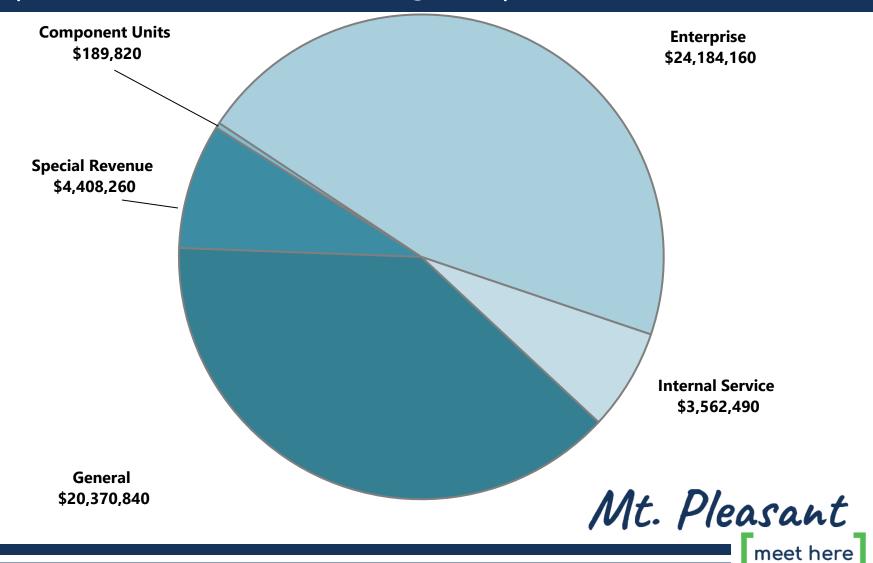
\$800,000.00

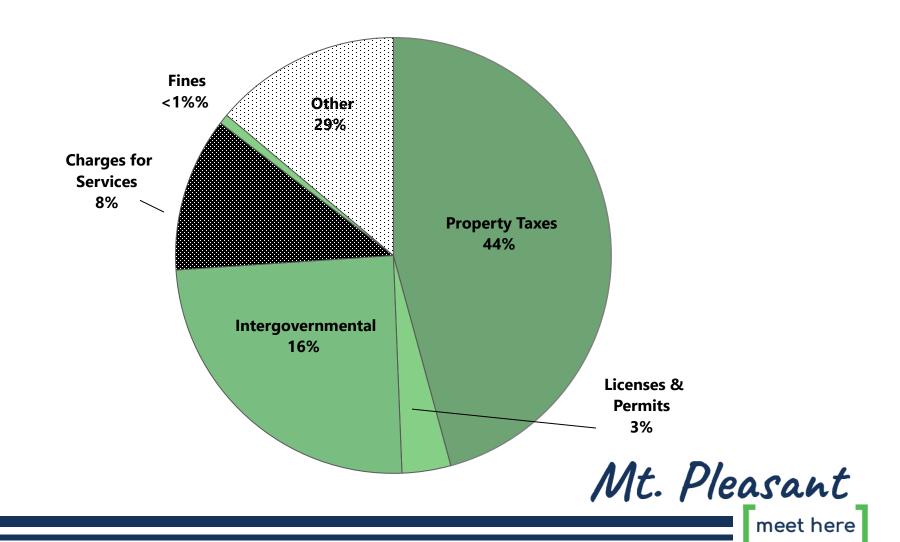
Uploaded Files

No files have been uploaded.

- Goals & Objectives
 - Maintain Stable and Financially Responsible Operations
 - Continue Positive and Productive Relationships with Community Partners and Residents/Businesses
 - Provide Safe Accommodations for Pedestrians and Bicyclists
 - Create a Community Friendly Space in our Downtown Area

Goals & Objectives


- Provide a Great Parks System and Expand our Sports, Events, and Recreation Offerings
- Create a Sense of Place by Promoting the "Meet Here" Branding and Working to Become a Cool Destination
- Address the Housing Market Demands in Our Community, Including Home Ownership Opportunities
- Maximize Economic Viability on Mission Street
- Prepare Mt. Pleasant Center for Future Development
 Opportunities


- Challenges
 - Inflation
 - PEAK & Recreation
 - Act 51 Funding
 - MTT Cases

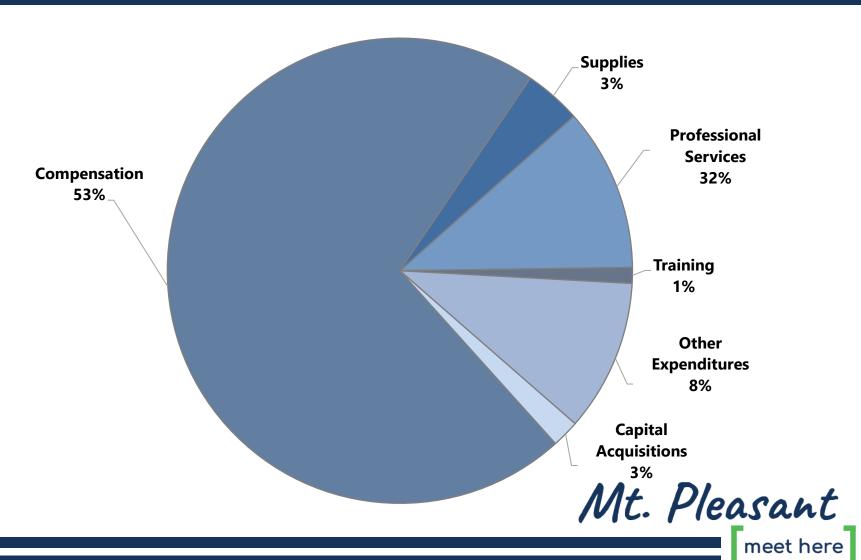
All Funds Expenditures/Working Capital Uses – \$52.7M

General Fund Revenue – \$20.0M

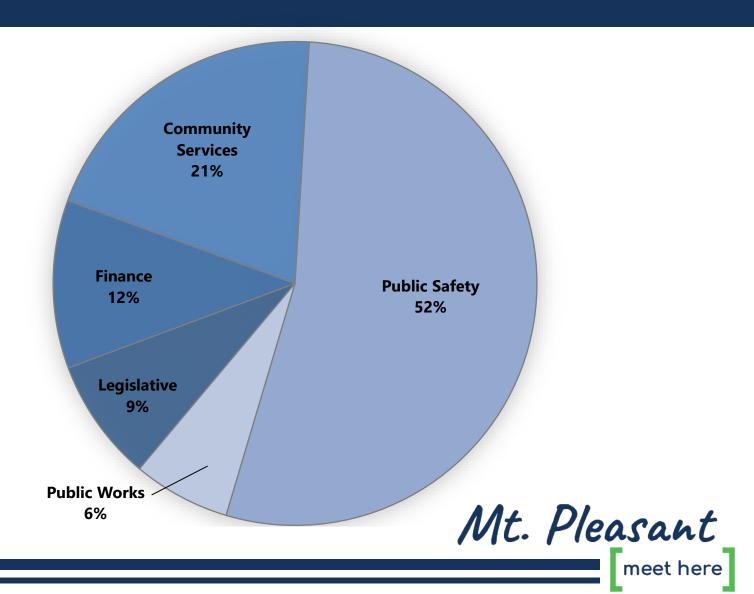


General Fund Revenue

- ARPA Funds
 - Recognize when we use them
 - GKB Trail \$525,000
 - Town Center \$1,138,000
- Same millage rate
 - Assumed 3% increase in taxable value
- State Shared Revenue
 - Current state projections



Millage Rates



General Fund Expenditures – \$20.3M

General Fund By Division

General Fund Expenditures

- Mainly Status Quo
- Changes:
 - Fire Study
 - MERS Contribution \$550,000
 - Parks & Recreation Merger

General Fund Balance

- Unassigned Fund Balance
 - Using \$69,030 of Unassigned Fund Balance
 - \$5.9 million
 - 29.1% of 2024 budget

General Fund Balance - Assigned

- Fire truck reserve
 - \$200,000 annual contribution
- Assigned for Economic Initiatives
 - **-** \$640,230

Local Street

- Estimated fund balance \$167,322
- Reconstructs: None
- Overlays Arnold, Adams, Elm, Edgewood,
 Deming & May

Major Street

- Estimated fund balance \$539,783
- Reconstructs: None
- Overlays Brown Street

CIP Millage Projects

- \$265,000 M-20 Pedestrian Bridge
- \$260,000 Chippewa River Bank Protection
- \$135,430 Network Switches
- \$108,000 Parks Roads & Trails
- \$89,000 Alleyway Renovations
- \$56,000 DPS Building Masonry Joints
- \$52,000 Millpond Shelter Roof
- \$38,000 Universal Access Chipp-A-Waters Playground

- CIP Millage Projects
 - \$38,000 Apparatus Bay Floors
 - \$30,000 Downtown Improvement Program

- Airport
 - Taxi-way A rehab
- Water Resource Recovery Facility
 - Plant rehab Phase II

- Solid Waste
 - Continue no-fee brush pickup twice per year
- Water
 - \$1,238,000 in capital projects

Fees and Charges

- New Fees
 - Water & Sewer
 - Parks & Recreation
 - Building Permits & Zoning Appeals

Utility Bill – Residential Monthly

(assumed 5,000 gallons)

2024	Water	WRRF	Total
Big Rapids	\$36.25	\$48.35	\$84.60
Clare	39.89	53.07	92.89
Union Township	20.00	37.12	57.12
Midland	29.35	34.97	64.32
Bay City	52.14	80.68	132.82

City of Mt. Pleasant

2023 Actual	\$28.79	\$24.82	\$53.61
2024 Proposed	29.29	28.49	57.78
Change from 2023 to 2024	0.50	3.67	4.17

Unresolved Issues/Unknown

Recreation/PEAK Funding

Changes to Solid Waste & Recycling

Next Steps

- Work Sessions
 - September 25: Fees
 - October 23: Commissioner Questions
- Questions to City Manager by October 9
- Public Hearing November 13
- Budget Adoption by last meeting of the year

